Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3

Abstract

The neural tube defects (NTDs) spina bifida and anencephaly are widely prevalent severe birth defects. The mouse mutant curly tail (ct/ct) has served as a model of NTDs for 50 years, even though the responsible genetic defect remained unrecognized. Here we show by gene targeting, mapping and genetic complementation studies that a mouse homolog of the Drosophila grainyhead (grh) gene, grainyhead-like-3 (Grhl3), is a compelling candidate for the gene underlying the curly tail phenotype. The NTDs in Grhl3-null mice are more severe than those in the curly tail strain, as the Grhl3 alleles in ct/ct mice are hypomorphic. Spina bifida in ct/ct mice is folate resistant, but its incidence can be markedly reduced by maternal inositol supplementation periconceptually. The NTDs in Grhl3−/− embryos are also folate resistant, but unlike those in ct/ct mice, they are resistant to inositol. These findings suggest that residual Grhl3 expression in ct/ct mice may be required for inositol rescue of folate-resistant NTDs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Grhl3 from E8.5 to E15.5.
Figure 2: Generation of a null allele of Grhl3.
Figure 3: Phenotype of Grhl3-deficient mice.
Figure 4: Grhl3 is a compelling candidate for gene underlying ct.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ray, J.G. et al. Association of neural tube defects and folic acid fortification in Canada. Lancet 360, 2047–2048 (2002).

    Article  Google Scholar 

  2. Czeizel, A.E. & Dudas, I. Prevention of the first occurrence of neural-tube defects by peri-conceptional vitamin supplementation. N. Engl. J. Med. 327, 1832–1835 (1992).

    Article  CAS  Google Scholar 

  3. Carter, C.O. Clues to the aetiology of neural tube malformations. Dev. Med. Child Neurol. 16, 3–15 (1974).

    Article  CAS  Google Scholar 

  4. McBride, M.L. Sib risk of anencephaly and spina bifida in British Columbia. Am. J. Med. Genet. 3, 377–387 (1979).

    Article  CAS  Google Scholar 

  5. Juriloff, D.M. & Harris, M.J. Mouse models for neural tube closure defects. Hum. Mol. Genet. 9, 993–1000 (2000).

    Article  CAS  Google Scholar 

  6. Harris, M.J. Why are the genes that cause risk of human neural tube defects so hard to find? Teratology 63, 165–166 (2001).

    Article  CAS  Google Scholar 

  7. van Straaten, H.W.M. & Copp, A.J. Curly tail: a 50-year history of the mouse spina bifida model. Anat. Embryol. 203, 225–237 (2001).

    Article  CAS  Google Scholar 

  8. Neumann, P.E. et al. Multifactorial inheritance of neural tube defects - localisation of the major gene and recognition of modifiers in ct mutant mice. Nat. Genet. 6, 357–362 (1994).

    Article  CAS  Google Scholar 

  9. Letts, V.A., Schork, N.J., Copp, A.J., Bernfield, M. & Frankel, W.N. A curly tail modifier locus, mct1, on mouse chromosome 17. Genomics 29, 719–724 (1995).

    Article  CAS  Google Scholar 

  10. Greene, N.D.E. & Copp, A.J. Inositol prevents folate-resistant neural tube defects in the mouse. Nat. Med. 3, 60–66 (1997).

    Article  CAS  Google Scholar 

  11. Gruneberg, H. Genetic studies on the skeleton of the mouse. VIII. Curly tail. J. Genet. 52, 52–67 (1954).

    Article  Google Scholar 

  12. Ting, S.B. et al. The identification and characterisation of human Sister-of-Manager (SOM) expands the grainyhead-like family of developmental transcription factors. Biochem. J. 370, 953–962 (2003).

    Article  CAS  Google Scholar 

  13. Wilanowski, T. et al. A highly conserved novel family of developmental transcription factors related to Drosophila grainyhead. Mech. Dev. 114, 37–50 (2002).

    Article  CAS  Google Scholar 

  14. Biggin, M.D. & Tjian, R. Transcription factors that activate the Ultrabithorax promoter in developmentally staged extracts. Cell 53, 699–711 (1988).

    Article  CAS  Google Scholar 

  15. Bray, S.J., Burke, B., Brown, N.H. & Hirsh, J. Embryonic expression of a family of Drosophila proteins that interact with a central nervous system regulatory element. Genes Dev. 3, 1130–1145 (1989).

    Article  CAS  Google Scholar 

  16. Bray, S.J. & Kafatos, F.C. Developmental function of Elf-1: an essential transcription factor during embryogenesis in Drosophila. Genes Dev. 5, 1672–1683 (1991).

    Article  CAS  Google Scholar 

  17. Dynlacht, B.D., Attardi, L.D., Admon, A., Freeman, M. & Tjian, R. Function of NTF-1, a developmentally regulated Drosophila transcription factor that binds neuronal cis elements. Genes Dev. 3, 1677–1688 (1989).

    Article  CAS  Google Scholar 

  18. Uv, A.E., Harrison, E.J. & Bray, S.J. Tissue-specific splicing and functions of the Drosophila transcription factor Grainyhead. Mol. Cell. Biol. 17, 6727–6735 (1997).

    Article  CAS  Google Scholar 

  19. Venkatesan, K., McManus, H.R., Mello, C.C., Smith, T.F. & Hansen, U. Functional conservation between family members of an ancient duplicated transcription factor family, LSF/Grainyhead. Nucl. Acids Res. 31, 4304–4316 (2003)

    Article  CAS  Google Scholar 

  20. Huang, J.-D. et al. Binding sites for transcription factor NTF-1/Elf-1 contribute to the ventral repression of decapentaplegic. Genes Dev. 9, 3177–3189 (1995).

    Article  CAS  Google Scholar 

  21. Liaw, G.-J. et al. The torso response element binds GAGA and NTF-1/Elf-1, and regulates tailless by relief of repression. Genes Dev. 9, 3163–3176 (1995).

    Article  CAS  Google Scholar 

  22. Attardi, L.D., Von Seggern, D. & Tjian, R. Ectopic expression of wild type or a dominant-negative mutant of transcription factor NTF-1 disrupts normal Drosophila development. Proc. Natl. Acad. Sci. USA 90, 10563–10567 (1993).

    Article  CAS  Google Scholar 

  23. Jacinto, A., Woolner, S., & Martin, P. Dynamic analysis of dorsal closure in Drosophila: from genetics to cell biology. Dev. Cell 3, 9–19 (2002).

    Article  CAS  Google Scholar 

  24. Kudryavtseva, E.I. et al. Identification and characterisation of grainyhead-like epithelial transactivator (GET-1), a novel mammalian grainyhead-like factor. Dev. Dyn. 226, 604–617 (2003).

    Article  CAS  Google Scholar 

  25. Beier, D.R., Dushkin, H. & Telle, T. Haplotype analysis of intra-specific backcross curly-tail mice confirms the localization of ct to chromosome 4. Mamm. Genome 6, 269–272 (1995).

    Article  CAS  Google Scholar 

  26. Copp, A.J., Brook, F.A. & Roberts, H.J. A cell-type specific abnormality of cell proliferation in mutant (curly tail) mouse embryos developing spinal neural tube defects. Development 104, 285–295 (1988).

    CAS  PubMed  Google Scholar 

  27. Peeters, M.C.E. et al. Role of differential cell proliferation in the tail bud in aberrant mouse neurulation. Dev. Dyn. 211, 382–389 (1998).

    Article  CAS  Google Scholar 

  28. Peeters, M.C.E., Hekking, J.W.M., Vainas, T., Drukker, J. & van Straaten, H.W.M. Spatio-temporal curvature pattern of the caudal body axis for non-mutant and curly tail mouse embryos during the period of neural tube closure. Anat. Embryol. 195, 259–266 (1997).

    Article  CAS  Google Scholar 

  29. Brook, F.A., Shum, A.S.W., van Straaten, H.W.M. & Copp, A.J. Curvature of the caudal region is responsible for failure of neural tube closure in the curly tail (ct) mouse embryo. Development 113, 671–678 (1991).

    CAS  PubMed  Google Scholar 

  30. Colas, J-F. & Schoenwolf, G.C. Towards a cellular and molecular understanding of neurulation. Dev. Dyn. 221, 117–145 (2001).

    Article  CAS  Google Scholar 

  31. Chen, W.H., Morriss-Kay, G.M. & Copp, A.J. Genesis and prevention of spinal neural tube defects in the curly tail mutant mouse: Involvement of retinoic acid and its nuclear receptors RAR-β and RAR-γ. Development 121, 681–691 (1995).

    CAS  PubMed  Google Scholar 

  32. Seller, M.J. & Perkins-Cole, K.J. Hyperthermia and neural tube defects of the curly-tail mouse. J. Craniofac. Genet. Dev. Biol. 7, 321–330 (1987).

    CAS  PubMed  Google Scholar 

  33. Martin, P. & Wood, W. Epithelial fusions in the embryo. Curr. Opin. Cell Biol. 14, 569–574 (2002).

    Article  CAS  Google Scholar 

  34. Moury, J.D. & Schoenwolf, G.C. Cooperative model of epithelial shaping and bending during avian neurulation: autonomous movements of the neural plate, autonomous movements of the epidermis, and interactions in the neural plate epidermis transition zone. Dev. Dyn. 204, 232–337 (1995).

    Article  Google Scholar 

  35. Hackett, D.A., Smith, J.L. & Schoenwolf, G.C. Epidermal ectoderm is required for full elevation and for convergence during bending of the avian neural plate. Dev. Dyn. 210, 397–406 (1997).

    Article  CAS  Google Scholar 

  36. Lawson, A., Anderson, H. & Schoenwolf, G.C. Cellular mechanisms of neural fold formation and morphogenesis in the chick embryo. Anat. Rec. 262, 153–168 (2001).

    Article  CAS  Google Scholar 

  37. Barth, K.A. et al. Bmp activity establishes a gradient of positional information throughout the entire neural plate. Development 126, 4977–4987 (1999).

    CAS  PubMed  Google Scholar 

  38. Streit, A & Stern, C.D. Establishment and maintenance of the border of the neural plate in the chick: involvement of FGF and BMP activity. Mech. Dev. 82, 51–66 (1999).

    Article  CAS  Google Scholar 

  39. Wilson, P.A. & Hemmati-Brivanlou, A. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376, 331–333 (1995).

    Article  CAS  Google Scholar 

  40. Wilson, S. et al. The status of Wnt signalling regulates neural and epidermal fates in the chick embryo. Nature 411, 325–330 (2001).

    Article  CAS  Google Scholar 

  41. Bondeva, T. et al. Bifurcation of lipid and protein kinase signals of PI3Kγ to the protein kinases PKB and MAPK. Science 282, 293–296 (1998).

    Article  CAS  Google Scholar 

  42. Starr, R. et al. Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proc. Natl. Acad. Sci. USA 95, 14395–14399 (1998).

    Article  CAS  Google Scholar 

  43. Schwenk, F., Baron, U. & Rajewsky, K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucl. Acids Res. 23, 5080–5081 (1995).

    Article  CAS  Google Scholar 

  44. Seller, M.J. Vitamins, folic acid and the cause and prevention of neural tube defects. Ciba Found. Symp. 181, 161–173 (1994).

    CAS  PubMed  Google Scholar 

  45. Mansour, S.L., Goddard, J.M. & Capecchi, M.R. Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 117, 13–28 (1993).

    CAS  PubMed  Google Scholar 

  46. Ohbayashi, N. et al. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev. 16, 870–879 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Jane lab and S. Foote for helpful discussions; J. Salmon, S. Vasudevan and Ozgene Inc. for technical assistance; B. Mesiti for help with figure preparation; and staff from the Walter & Eliza Hall Institute for animal support and statistical analyses. This work was supported by grant PO1 HL53749–03 from the National Institutes of Health. S.M.J. is a Senior Research Fellow of the Australian National Health and Medical Research Council. S.B.T is a scholar of the Cancer Council of Victoria. J.M.C. is supported by Cancer Center Support CORE Grant P30 CA 21765, the American Lebanese Syrian Associated Charities and the Assisi Foundation of Memphis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M Jane.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ting, S., Wilanowski, T., Auden, A. et al. Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3. Nat Med 9, 1513–1519 (2003). https://doi.org/10.1038/nm961

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm961

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing