Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure

A Corrigendum to this article was published on 01 January 2004

Abstract

Nitric oxide (NO) inhibits vascular contraction by activating cGMP-dependent protein kinase I-α (PKGI-α), which causes dephosphorylation of myosin light chain (MLC) and vascular smooth muscle relaxation. Here we show that PKGI-α attenuates signaling by the thrombin receptor protease-activated receptor-1 (PAR-1) through direct activation of regulator of G-protein signaling-2 (RGS-2). NO donors and cGMP cause cGMP-mediated inhibition of PAR-1 and membrane localization of RGS-2. PKGI-α binds directly to and phosphorylates RGS-2, which significantly increases GTPase activity of Gq, terminating PAR-1 signaling. Disruption of the RGS-2–PKGI-α interaction reverses inhibition of PAR-1 signaling by nitrovasodilators and cGMP. Rgs2−/− mice develop marked hypertension, and their blood vessels show enhanced contraction and decreased cGMP-mediated relaxation. Thus, PKGI-α binds to, phosphorylates and activates RGS-2, attenuating receptor-mediated vascular contraction. Our study shows that RGS-2 is required for normal vascular function and blood pressure and is a new drug development target for hypertension.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of PAR-1 signaling by the NO/cGMP/PKG pathway.
Figure 2: Identification of RGS-2 as a PKGI-α substrate.
Figure 3: Binding of PKG to RGS-2 and membrane translocation of RGS-2 after cellular treatment with SNOC or cGMP.
Figure 4: Phosphorylation of RGS-2 by PKGI-α increases the GTPase activity of RGS-2.
Figure 5: Disruption of cGMP-mediated inhibition of PAR-1 signaling by overexpression of the RGS-2–PKGI interaction domain.
Figure 6: Blood pressure of intact wild-type (WT) and Rgs2−/− mice, and ex vivo contractile and relaxant responses of vascular rings.

Similar content being viewed by others

References

  1. Somlyo, A.P. & Somlyo, A.V. Signal transduction and regulation in smooth muscle. Nature 372, 231–236 (1994).

    Article  CAS  Google Scholar 

  2. Davis, M.J. & Hill, M.A. Signaling mechanisms underlying the vascular myogenic response. Phys. Rev. 79, 387–423 (1999).

    CAS  Google Scholar 

  3. Hartshorne, D.J. & Hirano, K. Interactions of protein phosphatase type 1, with a focus on myosin phosphatase. Mol. Cell. Biochem. 190, 79–84 (1999).

    Article  CAS  Google Scholar 

  4. Lifton, R.P. & Geller, D.S. Molecular mechanisms of human hypertension. Cell 104, 545–556 (2001).

    Article  CAS  Google Scholar 

  5. Neves, S.R., Ram, P.T. & Iyengar, R.G Protein pathways. Science 296, 1636–639 (2002).

    Article  CAS  Google Scholar 

  6. Berridge, M.J. Inositol trisphosphate and calcium signalling. Nature 361, 315–325 (1993).

    Article  CAS  Google Scholar 

  7. Demoliou-Mason, C.D. G-protein-coupled receptors in vascular smooth muscle cells. Biol. Signals 7, 90–97 (1998).

    Article  CAS  Google Scholar 

  8. Gohla, A., Schultz, G. & Offermanns, S. Role for G12/G13 in agonist-induced vascular smooth muscle cell contraction. Circ. Res. 87, 221–227 (2000).

    Article  CAS  Google Scholar 

  9. Lincoln, T.M. Cyclic GMP and vascular biology. in Cyclic GMP: Biochemistry, Physiology and Pathophysiology (ed. Lincoln, T.) 97–132 (R.G. Landes, Austin, Texas, 1994).

    Google Scholar 

  10. Huang, P.L. et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377, 239–242 (1995).

    Article  CAS  Google Scholar 

  11. Shesely, E.G. et al. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA 93, 13176–13181 (1996).

    Article  CAS  Google Scholar 

  12. Haynes, W.G., Noon, J.P., Walker, B.R. & Webb, D.J. L-NMMA increases blood pressure in man. Lancet 342, 931–932 (1993).

    Article  CAS  Google Scholar 

  13. Pfeifer, A. et al. Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J. 17, 3045–3051 (1998).

    Article  CAS  Google Scholar 

  14. Rapoport, R.M. Cyclic guanosine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidylinositol hydrolysis in rat aorta. Circ. Res. 58, 407–410 (1986).

    Article  CAS  Google Scholar 

  15. Hirata, M., Kohse, K.P., Chang, C.-H., Ikebe, T. & Murad, F. Mechanism of cyclic GMP inhibition of inositol phosphate formation in rat aorta segments and cultured bovine aortic smooth muscle cells. J. Biol. Chem. 265, 1268–1273 (1990).

    CAS  PubMed  Google Scholar 

  16. Cornwell, T.L. & Lincoln, T.M. Regulation of intracellular Ca2+ levels in cultured vascular smooth muscle cells. J. Biol. Chem. 264, 1146–1155 (1989).

    CAS  PubMed  Google Scholar 

  17. Mendelsohn, M.E., O'Neill, S., George, D. & Loscalzo, J. Inhibition of fibrinogen binding to human platelets by S-nitroso-N-acetylcysteine. J. Biol. Chem. 265, 19028–19034 (1990).

    CAS  PubMed  Google Scholar 

  18. Wu, X.Q., Somlyo, A.V. & Somlyo, A.P. GMP-dependent stimulation reverses G-protein-coupled inhibition of smooth muscle myosin light chain phosphatase. Biochem. Biophys. Res. Comm. 220, 658–663 (1996).

    Article  CAS  Google Scholar 

  19. Lee, M.R., Li, L. & Kitazawa, T. Cyclic GMP causes Ca2+ desensitization in vascular smooth muscle by activating the myosin light chain phosphatase. J. Biol. Chem. 272, 5063–5068 (1997).

    Article  CAS  Google Scholar 

  20. Wang, G.R., Zhu, Y., Halushka, P.V., Lincoln, T.M. & Mendelsohn, M.E. Mechanism of platelet inhibition by nitric oxide: in vivo phosphorylation of thromboxane receptor by cyclic GMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 95, 4888–4893 (1998).

    Article  CAS  Google Scholar 

  21. Surks, H.K. et al. Regulation of myosin phosphatase by a specific interaction with cGMP-dependent protein kinase Iα. Science 286, 1583–1587 (1999).

    Article  CAS  Google Scholar 

  22. Schlossmann, J. et al. Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Iβ. Nature 404, 197–201 (2000).

    Article  CAS  Google Scholar 

  23. Yuasa, K., Michibata, H., Omori, K. & Yanaka, N. A novel interaction of cGMP-dependent protein kinase I with troponin T. J. Biol. Chem. 274, 37429–37434 (1999).

    Article  CAS  Google Scholar 

  24. Yamamoto, S., Yan, F., Zhou, H. & Tai, H.H. Serine 331 is the major site of receptor phosphorylation induced by agents that activate protein kinase G in HEK 293 cells overexpressing thromboxane receptor α. Arch. Biochem. Biophys. 393, 97–105 (2001).

    Article  CAS  Google Scholar 

  25. Surks, H.K. & Mendelsohn, M.E. Dimerization of cGMP-dependent protein kinase 1α and the myosin-binding subunit of myosin phosphatase: role of leucine zipper domains. Cell Signal. 15, 937–944 (2003).

    Article  CAS  Google Scholar 

  26. Xia, C., Bao, Z., Yue, C., Sanborn, B.M. & Liu, M. Phosphorylation and regulation of G-protein-activated phospholipase C-β 3 by cGMP-dependent protein kinases. J. Biol. Chem. 276, 19770–19777 (2001).

    Article  CAS  Google Scholar 

  27. Feil, R. et al. Functional reconstitution of vascular smooth muscle cells with cGMP-dependent protein kinase I isoforms. Circ. Res. 90, 1080–1086 (2002).

    Article  CAS  Google Scholar 

  28. Coughlin, S.R. Thrombin signalling and protease-activated receptors. Nature 407, 258–264 (2000).

    Article  CAS  Google Scholar 

  29. Hung, D.T., Vu, T.H., Nelken, N.A. & Coughlin, S.R. Thrombin-induced events in non-platelet cells are mediated by the unique proteolytic mechanism established for the cloned platelet thrombin receptor. J. Cell Biol. 116, 827–832 (1992).

    Article  CAS  Google Scholar 

  30. Pitcher, J.A., Freedman, N.J. & Lefkowitz, R.J. G protein-coupled receptor kinases. Annu. Rev. Biochem. 67, 653–692 (1998).

    Article  CAS  Google Scholar 

  31. Ishii, K. et al. Inhibition of thrombin receptor signaling by a G-protein coupled receptor kinase. Functional specificity among G- protein coupled receptor kinases. J. Biol. Chem. 269, 1125–1130 (1994).

    CAS  PubMed  Google Scholar 

  32. Watson, N., Linder, M.E., Druey, K.M., Kehrl, J.H. & Blumer, K.J. RGS family members: GTPase-activation proteins for heterotrimeric G-protein α-subunits. Nature 383, 172–175 (1996).

    Article  CAS  Google Scholar 

  33. Heximer, S.P., Watson, N., Linder, M.E., Blumer, K.J. & Hepler, J.R. RGS-2/G0S8 is a selective inhibitor of Gqα function. Proc. Natl. Acad. Sci. USA 94, 14389–14393 (1997).

    Article  CAS  Google Scholar 

  34. Ammendola, A., Geiselhoringer, A., Hofmann, F. & Schlossmann, J. Molecular determinants of the interaction between the inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate (IRAG) and cGMP kinase I β. J. Biol. Chem. 276, 24153–24159 (2001).

    Article  CAS  Google Scholar 

  35. Heximer, S.P., Lim, H., Bernard, J.L. & Blumer, K.J. Mechanisms governing subcellular localization and function of human RGS-2. J. Biol. Chem. 276, 14195–14203 (2001).

    Article  CAS  Google Scholar 

  36. Xu, X. et al. RGS proteins determine signaling specificity of Gq-coupled receptors. J. Biol. Chem. 274, 3549–3556 (1999).

    Article  CAS  Google Scholar 

  37. Pedram, A., Razandi, M., Kehrl, J. & Levin, E.R. Natriuretic peptides inhibit G protein activation. Mediation through cross-talk between cyclic GMP-dependent protein kinase and regulators of G protein-signaling proteins. J. Biol. Chem. 275, 7365–7372 (2000).

    Article  CAS  Google Scholar 

  38. Chidiac, P. & Ross, E.M. Phospholipase C-β 1 directly accelerates GTP hydrolysis by Gαq and acceleration is inhibited by Gβγ subunits. J. Biol. Chem. 274, 19639–19643 (1999).

    Article  CAS  Google Scholar 

  39. Oliveira, D.S. et al. Regulation of T cell activation, anxiety, and male aggression by RGS-2. Proc. Natl. Acad. Sci. USA 97, 12272–12277 (2000).

    Article  Google Scholar 

  40. Heximer, S.P. et al. Hypertension and prolonged vasoconstrictor signaling in RGS-2-deficient mice. J. Clin. Invest. 111, 1259 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Le, T.H. & Coffman, T.M. RGS-2: a 'turn-off' in hypertension. J. Clin. Invest. 111, 441–443 (2003).

    Article  CAS  Google Scholar 

  42. Shapiro, M.J., Trejo, J., Zeng, D. & Coughlin, S.R. Role of the thrombin receptor's cytoplasmic tail in intracellular trafficking. Distinct determinants for agonist-triggered versus tonic internalization and intracellular localization. J. Biol. Chem. 271, 32874–32880 (1996).

    Article  CAS  Google Scholar 

  43. Zhu, Y., O'Neill, S., Saklatvala, J., Tassi, L. & Mendelsohn, M.E. Phosphorylated HSP27 associates with the activated-dependent cytoskeleton in human platelets. Blood 84, 3715–3723 (1994).

    CAS  PubMed  Google Scholar 

  44. Beinborn, M., Quinn, S.M. & Kopin, A.S. Minor modifications of a cholecystokinin-B/gastrin receptor non-peptide antagonist confer a broad spectrum of functional properties. J. Biol. Chem. 273, 14146–14151 (1998).

    Article  CAS  Google Scholar 

  45. Ingi, T. et al. Dynamic regulation of RGS-2 suggests a novel mechanism in G-protein signaling and neuronal plasticity. J. Neurosci. 274, 19639–19643 (1999).

    Google Scholar 

  46. Zhu, Y. et al. Abnormal vascular function and hypertension in mice deficient in estrogen receptor β. Science 295, 505–508 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

Stably transfected Rat1 fibroblast cells expressing PAR-1 were the kind gift of S. Coughlin. This work was supported in part by National Institutes of Health grants P50 HL63494, NIH R01 HL55309 and NIH R01 HL56069 (M.E.M.); NIH HL56235 and a Grant-in-Aid from the American Heart Association (Y.Z.), and NIH P01 GM65533 and R01 GM62338 (D.P.S.). D.P.S. is Year 2000 Scholar of The EJLB Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E Mendelsohn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, M., Wang, G., Lu, P. et al. Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med 9, 1506–1512 (2003). https://doi.org/10.1038/nm958

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm958

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing