Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif

Abstract

The human protein apolipoprotein B mRNA-editing enzyme–catalytic polypeptide-like-3G (APOBEC3G), also known as CEM-15, mediates a newly described form of innate resistance to retroviral infection by catalyzing the deamination of deoxycytidine to deoxyuridine in viral cDNA replication intermediates. Because DNA deamination takes place after virus entry into target cells, APOBEC3G function is dependent on its association with the viral nucleoprotein complexes that synthesize cDNA and must therefore be incorporated into virions as they assemble in infected cells. Here we show that the HIV-1 virion infectivity factor (Vif) protein protects the virus from APOBEC3G-mediated inactivation by preventing its incorporation into progeny virions, thus allowing the ensuing infection to proceed without DNA deamination. In addition to helping exclude APOBEC3G from nascent virions, Vif also removes APOBEC3G from virus-producing cells by inducing its ubiquitination and subsequent degradation by the proteasome. Our findings indicate that pharmacologic strategies aimed at stabilizing APOBEC3G in HIV-1 infected cells should be explored as potential HIV/AIDS therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vif inhibits APOBEC3G packaging into HIV-1 virions.
Figure 2: Vif induces the ubiquitination and proteasomal degradation of APOBEC3G.
Figure 3: Residues in Vif essential for regulating HIV-1 infectivity are required for APOBEC3G degradation.

Similar content being viewed by others

References

  1. Harris, R.S. et al. DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803–809 (2003).

    Article  CAS  Google Scholar 

  2. Mangeat, B. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103 (2003).

    Article  CAS  Google Scholar 

  3. Sheehy, A.M., Gaddis, N.C., Choi, J.D. & Malim, M.H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).

    Article  CAS  Google Scholar 

  4. Simon, J.H.M. & Malim, M.H. The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes. J. Virol. 70, 5297–5305 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, H. et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424, 94–98 (2003).

    Article  CAS  Google Scholar 

  6. Klarmann, G.J., Chen, X., North, T.W. & Preston, B.D. Incorporation of uracil into minus strand DNA affects the specificity of plus strand synthesis initiation during lentiviral reverse transcription. J. Biol. Chem. 278, 7902–7909 (2003).

    Article  CAS  Google Scholar 

  7. Mariani, R. et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114, 21–31 (2003).

    Article  CAS  Google Scholar 

  8. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  9. Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  Google Scholar 

  10. Ma, X.-Y., Sova, P., Chao, W. & Volsky, D.J. Cysteine residues in the Vif protein of human immunodeficiency virus type 1 are essential for viral infectivity. J. Virol. 68, 1714–1720 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Simon, J.H., Sheehy, A.M., Carpenter, E.A., Fouchier, R.A. & Malim, M.H. Mutational analysis of the human immunodeficiency virus type 1 Vif protein. J. Virol. 73, 2675–2681 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, X., Gonclaves, J. & Gabuzda, D. Phosphorylation of Vif and its role in HIV-1 replication. J. Biol. Chem. 271, 10121–10129 (1996).

    Article  CAS  Google Scholar 

  13. Camaur, D. & Trono, D. Characterization of human immunodeficiency virus type 1 Vif particle incorporation. J. Virol. 70, 6106–6111 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fouchier, R.A.M., Simon, J.H.M., Jaffe, A.B. & Malim, M.H. Human immunodeficiency virus type 1 Vif does not influence expression or virion incorporation of gag-, pol-, and env-encoded proteins. J. Virol. 70, 8263–8269 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, H. et al. The Vif protein of human and simian immunodeficiency viruses is packaged into virions and associates with viral core structures. J. Virol. 69, 7630–7638 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Margottin, F. et al. A novel human WD protein, h-βTrCP, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol. Cell 1, 565–574 (1998).

    Article  CAS  Google Scholar 

  17. Lama, J., Mangasarian, A. & Trono, D. Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Env incorporation in a Nef- and Vpu-inhibitable manner. Curr. Biol. 9, 622–631 (1999).

    Article  CAS  Google Scholar 

  18. Levesque, K., Zhao, Y.S. & Cohen, E.A. Vpu exerts a positive effect on HIV-1 infectivity by down-modulating CD4 receptor molecules at the surface of HIV-1 producing cells. J. Biol. Chem. 278, 28346–28353 (2003).

    Article  CAS  Google Scholar 

  19. Demirov, D.G., Ono, A., Orenstein, J.M. & Freed, E.O. Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc. Natl. Acad. Sci. USA 99, 955–960 (2002).

    Article  CAS  Google Scholar 

  20. Garrus, J.E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001).

    Article  CAS  Google Scholar 

  21. Martin-Serrano, J., Zang, T. & Bieniasz, P.D. Role of ESCRT-I in retroviral budding. J. Virol. 77, 4794–4804 (2003).

    Article  CAS  Google Scholar 

  22. VerPlank, L. et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc. Natl. Acad. Sci. USA 98, 7724–7729 (2001).

    Article  CAS  Google Scholar 

  23. Ward, C.L., Omura, S. & Kopito, R.R. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83, 121–127 (1995).

    Article  CAS  Google Scholar 

  24. Simon, J.H.M., Southerling, T.E., Peterson, J.C., Meyer, B.E. & Malim, M.H. Complementation of vif-defective human immunodeficiency virus type 1 by primate, but not nonprimate, lentivirus vif genes. J. Virol. 69, 4166–4172 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Piñol-Roma, S. & Dreyfuss, G. Transcription-dependent and transcription-independent nuclear transport of hnRNP proteins. Science 253, 312–314 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Kopito for the kind gift of ubiquitin expression vectors. This work was supported by Research Grants from the UK Medical Research Council (M.H.M.), the Royal Society (A.M.S.) and the National Science Foundation (N.C.G.). M.H.M. is an Elizabeth Glaser Scientist supported by the Elizabeth Glaser Pediatric AIDS Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H Malim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheehy, A., Gaddis, N. & Malim, M. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9, 1404–1407 (2003). https://doi.org/10.1038/nm945

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm945

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing