Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Natural antibodies and complement are endogenous adjuvants for vaccine-induced CD8+ T-cell responses

Abstract

CD8+ T cells are essential for long-term, vaccine-induced resistance against intracellular pathogens. Here we show that natural antibodies, acting in concert with complement, are endogenous adjuvants for the generation of protective CD8+ T cells after vaccination against visceral leishmaniasis. IL-4 was crucial for the priming of vaccine-specific CD8+ T cells, and we defined the primary source of IL-4 as a CD11b+CD11clo phagocyte. IL-4 secretion was not observed in antibody-deficient mice and could be reconstituted with serum from normal, but not Btk immune-deficient, mice. Similarly, no IL-4 response or CD8+ T-cell priming was seen in C1qa−/− mice. These results identify a new pathway by which immune complex–mediated complement activation can regulate T-cell-mediated immunity. We propose that this function of natural antibodies could be exploited when developing new vaccines for infectious diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-4 is required for vaccination against leishmaniasis.
Figure 2: Priming of recombinant HASPB1–specific CD8+ T cells requires IL-4.
Figure 3: IL-4 secretion is upstream of IL-12 production.
Figure 4: CD11b+CD11clo phagocytes are responsible for primary IL-4 secretion.
Figure 5: IL-4 secretion requires immune complexes.
Figure 6: Cytokine secretion and CD8+ T-cell priming are complement-dependent.

Similar content being viewed by others

References

  1. Yoshida, A., Nagata, T., Uchijima, M. & Koide, Y. Protective CTL response is induced in the absence of CD4+ T cells and IFN-gamma by gene gun DNA vaccination with a minigene encoding a CTL epitope of Listeria monocytogenes. Vaccine 19, 4297–4306 (2001).

    Article  CAS  Google Scholar 

  2. Stager, S., Smith, D.F. & Kaye, P.M. Immunization with a recombinant stage-regulated surface protein from Leishmania donovani induces protection against visceral leishmaniasis. J. Immunol. 165, 7064–7071 (2000).

    Article  CAS  Google Scholar 

  3. Carvalho, L.H. et al. IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nat. Med. 8, 166–170 (2002).

    Article  CAS  Google Scholar 

  4. Gurunathan, S., Wu, C.Y., Freidag, B.L. & Seder, R.A. DNA vaccines: a key for inducing long-term cellular immunity. Curr. Opin. Immunol. 12, 442–447 (2000).

    Article  CAS  Google Scholar 

  5. Gardner, M.J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002).

    Article  CAS  Google Scholar 

  6. Kalergis, A.M. & Ravetch, J.V. Inducing tumor immunity through the selective engagement of activating Fcgamma receptors on dendritic cells. J. Exp. Med. 195, 1653–1659 (2002).

    Article  CAS  Google Scholar 

  7. Regnault, A. et al. Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J. Exp. Med. 189, 371–380 (1999).

    Article  CAS  Google Scholar 

  8. Tobery, T.W. & Siliciano, R.F. Targeting of HIV-1 antigens for rapid intracellular degradation enhances cytotoxic T lymphocyte (CTL) recognition and the induction of de novo CTL responses in vivo after immunization. J. Exp. Med. 185, 909–920 (1997).

    Article  CAS  Google Scholar 

  9. Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539–3543 (1993).

    Article  CAS  Google Scholar 

  10. Kopf, M., Abel, B., Gallimore, A., Carroll, M. & Bachmann, M.F. Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection. Nat. Med. 8, 373–378 (2002).

    Article  CAS  Google Scholar 

  11. Suresh, M. et al. Complement component 3 is required for optimal expansion of CD8 T cells during a systemic viral infection. J. Immunol. 170, 788–794 (2003).

    Article  CAS  Google Scholar 

  12. Haas, K.M. et al. Complement receptors CD21/35 link innate and protective immunity during Streptococcus pneumoniae infection by regulating IgG3 antibody responses. Immunity 17, 713–723 (2002).

    Article  CAS  Google Scholar 

  13. Hayakawa, K., Hardy, R.R. & Herzenberg, L.A. Peritoneal Ly-1 B cells: genetic control, autoantibody production, increased lambda light chain expression. Eur. J. Immunol. 16, 450–456 (1986).

    Article  CAS  Google Scholar 

  14. Hardy, R.R., Carmack, C.E., Li, Y.S. & Hayakawa, K. Distinctive developmental origins and specificities of murine CD5+ B cells. Immunol. Rev. 137, 91–118 (1994).

    Article  CAS  Google Scholar 

  15. Martin, F., Oliver, A.M. & Kearney, J.F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14, 617–629 (2001).

    Article  CAS  Google Scholar 

  16. Reid, R.R. et al. Endotoxin shock in antibody-deficient mice: unraveling the role of natural antibody and complement in the clearance of lipopolysaccharide. J. Immunol. 159, 970–975 (1997).

    CAS  PubMed  Google Scholar 

  17. Alce, T.M., Gokool, S., McGhie, D., Stager, S. & Smith, D.F. Expression of hydrophilic surface proteins in infective stages of Leishmania donovani. Mol. Biochem. Parasitol. 102, 191–196 (1999).

    Article  CAS  Google Scholar 

  18. Biedermann, T. et al. IL-4 instructs TH1 responses and resistance to Leishmania major in susceptible BALB/c mice. Nat. Immunol. 2, 1054–1060 (2001).

    Article  CAS  Google Scholar 

  19. Mohrs, M., Shinkai, K., Mohrs, K. & Locksley, R.M. Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15, 303–311 (2001).

    Article  CAS  Google Scholar 

  20. Naito, M. et al. Development, differentiation, and phenotypic heterogeneity of murine tissue macrophages. J. Leukoc. Biol. 59, 133–138 (1996).

    Article  CAS  Google Scholar 

  21. Seder, R.A. et al. Mouse splenic and bone marrow cell populations that express high-affinity Fc epsilon receptors and produce interleukin 4 are highly enriched in basophils. Proc. Natl. Acad. Sci. USA 88, 2835–2839 (1991).

    Article  CAS  Google Scholar 

  22. Coffman, R.L. & von der Weid, T. Multiple pathways for the initiation of T helper 2 (Th2) responses. J. Exp. Med. 185, 373–375 (1997).

    Article  CAS  Google Scholar 

  23. Wardemann, H., Boehm, T., Dear, N. & Carsetti, R. B-1a B cells that link the innate and adaptive immune responses are lacking in the absence of the spleen. J. Exp. Med. 195, 771–780 (2002).

    Article  CAS  Google Scholar 

  24. Boes, M. et al. Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J. Immunol. 160, 4776–4787 (1998).

    CAS  Google Scholar 

  25. Bona, C., Mond, J.J. & Paul, W.E. Synergistic genetic defect in B-lymphocyte function. I. Defective responses to B-cell stimulants and their genetic basis. J. Exp. Med. 151, 224–234 (1980).

    Article  CAS  Google Scholar 

  26. Khan, W.N. et al. Defective B cell development and function in Btk-deficient mice. Immunity 3, 283–299 (1995).

    Article  CAS  Google Scholar 

  27. Lutz, C. et al. IgD can largely substitute for loss of IgM function in B cells. Nature 393, 797–801 (1998).

    Article  CAS  Google Scholar 

  28. Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet. 19, 56–59 (1998).

    Article  CAS  Google Scholar 

  29. Schuler, T. et al. Generation of tumor-associated cytotoxic T lymphocytes requires interleukin 4 from CD8(+) T cells. J. Exp Med. 194, 1767–1775 (2001).

    Article  CAS  Google Scholar 

  30. King, C. et al. Interleukin-4 acts at the locus of the antigen-presenting dendritic cell to counter-regulate cytotoxic CD8+ T-cell responses. Nat. Med. 7, 206–214 (2001).

    Article  CAS  Google Scholar 

  31. Gicheru, M.M. et al. Vervet monkeys vaccinated with killed Leishmania major parasites and interleukin-12 develop a type 1 immune response but are not protected against challenge infection. Infect. Immun. 69, 245–251 (2001).

    Article  CAS  Google Scholar 

  32. Kenney, R.T. et al. Protective immunity using recombinant human IL-12 and alum as adjuvants in a primate model of cutaneous leishmaniasis. J. Immunol. 163, 4481–4488 (1999).

    CAS  PubMed  Google Scholar 

  33. O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8, 275–283 (1998).

    Article  CAS  Google Scholar 

  34. Hochrein, H. et al. Interleukin (IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J. Exp. Med. 192, 823–833 (2000).

    Article  CAS  Google Scholar 

  35. Brown, M.A. et al. B cell stimulatory factor-1/interleukin-4 mRNA is expressed by normal and transformed mast cells. Cell 50, 809–818 (1987).

    Article  CAS  Google Scholar 

  36. O'Keeffe, M. et al. Dendritic cell precursor populations of mouse blood: identification of the murine homologues of human blood plasmacytoid pre-DC2 and CD11c+ DC1 precursors. Blood 101, 1453–1459 (2003).

    Article  CAS  Google Scholar 

  37. Hayashi, N. et al. Kupffer cells from Schistosoma mansoni-infected mice participate in the prompt type 2 differentiation of hepatic T cells in response to worm antigens. J. Immunol. 163, 6702–6711 (1999).

    CAS  PubMed  Google Scholar 

  38. Qi, H., Popov, V. & Soong, L. Leishmania amazonensis-dendritic cell interactions in vitro and the priming of parasite-specific CD4(+) T cells in vivo. J. Immunol. 167, 4534–4542 (2001).

    Article  CAS  Google Scholar 

  39. Swain, S.L., McKenzie, D.T., Dutton, R.W., Tonkonogy, S.L. & English, M. The role of IL4 and IL5: characterization of a distinct helper T cell subset that makes IL4 and IL5 (Th2) and requires priming before induction of lymphokine secretion. Immunol. Rev. 102, 77–105 (1988).

    Article  CAS  Google Scholar 

  40. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35 (2003).

    Article  CAS  Google Scholar 

  41. Ross, T.M., Xu, Y., Bright, R.A. & Robinson, H.L. C3d enhancement of antibodies to hemagglutinin accelerates protection against influenza virus challenge. Nat. Immunol. 1, 127–131 (2000).

    Article  CAS  Google Scholar 

  42. Dempsey, P.W., Allison, M.E., Akkaraju, S., Goodnow, C.C. & Fearon, D.T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–350 (1996).

    Article  CAS  Google Scholar 

  43. Ochsenbein, A.F. & Zinkernagel, R.M. Natural antibodies and complement link innate and acquired immunity. Immunol. Today 21, 624–630 (2000).

    Article  CAS  Google Scholar 

  44. Mohrs, M. et al. Differences between IL-4- and IL-4 receptor alpha-deficient mice in chronic leishmaniasis reveal a protective role for IL-13 receptor signaling. J. Immunol. 162, 7302–7308 (1999).

    CAS  PubMed  Google Scholar 

  45. Yamaguchi, M. et al. Regulation of mouse mast cell surface Fc epsilon RI expression by dexamethasone. Int. Immunol. 13, 843–851 (2001).

    Article  CAS  Google Scholar 

  46. Murphy, M.L., Cotterell, S.E., Gorak, P.M., Engwerda, C.R. & Kaye, P.M. Blockade of CTLA-4 enhances host resistance to the intracellular pathogen, Leishmania donovani. J. Immunol. 161, 4153–4160 (1998).

    CAS  Google Scholar 

  47. Fleming, T.J., Fleming, M.L. & Malek, T.R. Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J. Immunol. 151, 2399–2408 (1993).

    CAS  PubMed  Google Scholar 

  48. Van Rooijen, N. & Sanders, A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J. Immunol. Methods 174, 83–93 (1994).

    Article  CAS  Google Scholar 

  49. Ogawa, M. et al. Expression and function of c-kit in hemopoietic progenitor cells. J. Exp. Med. 174, 63–71 (1991).

    Article  CAS  Google Scholar 

  50. Ato, M., Stager, S., Engwerda, C.R. & Kaye, P.M. Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis. Nat. Immunol. 3, 1185–1191 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the British Medical Research Council and The Wellcome Trust. Clodronate and control liposomes were a gift of Roche Diagnostics. The authors thank J. Langhorne (National Institute for Medical Research) for CBA/N serum, H. Helmby (London School of Hygiene and Tropical Medicine) for ACK2 monoclonal antibody, M. Ato for critical comments on the manuscript, the staff of the Biological Services Facility for animal husbandry and Joanne Warren for technical assistance. F.B. holds a Wellcome Trust Research Senior Fellowship for Medical Science in South Africa (grant no. 056708/Z/99).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M Kaye.

Ethics declarations

Competing interests

S.S., D.F.S. and P.M.K. are named inventors on a patent application covering the use of natural antibodies to screen pathogen proteomes for new vaccine candidates (UK Patent Application 03006616.4).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stäger, S., Alexander, J., Kirby, A. et al. Natural antibodies and complement are endogenous adjuvants for vaccine-induced CD8+ T-cell responses. Nat Med 9, 1287–1292 (2003). https://doi.org/10.1038/nm933

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm933

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing