Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation


Mature donor T cells cause graft-versus-host disease (GVHD), but they are also the main mediators of the beneficial graft-versus-tumor (GVT) activity of allogeneic bone marrow transplantation. Suppression of GVHD with maintenance of GVT activity is a desirable outcome for clinical transplantation. We have previously shown that donor-derived CD4+CD25+ regulatory T cells inhibit lethal GVHD after allogeneic bone marrow transplantation across major histocompatibility complex (MHC) class I and II barriers in mice. Here we demonstrate that in host mice with leukemia and lymphoma, CD4+CD25+ regulatory T cells suppress the early expansion of alloreactive donor T cells, their interleukin-2-receptor (IL-2R) α-chain expression and their capacity to induce GVHD without abrogating their GVT effector function, mediated primarily by the perforin lysis pathway. Thus, CD4+CD25+ T cells are potent regulatory cells that can separate GVHD from GVT activity mediated by conventional donor T cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: CD4+CD25+ Treg cells suppress alloreactivity in vitro and in vivo.
Figure 2: CD25 expression and cytokine production of donor T cells 5 d after transplantation.
Figure 3: Treg cells do not abrogate cytotoxic activity of Tconv cells against A20 leukemia cells in vitro.
Figure 4: GVT activity is maintained in the presence of Treg cells.
Figure 5: Protection from GVHD by donor Treg cells allows cotransplantation of sufficient numbers of effector T cells for GVT activity.


  1. 1

    Martin, P.J. et al. Effects of in vitro depletion of T cells in HLA-identical allogeneic marrow grafts. Blood 66, 664–672 (1985).

    CAS  PubMed  Google Scholar 

  2. 2

    Curtis, R.E. et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood 94, 2208–2216 (1999).

    CAS  PubMed  Google Scholar 

  3. 3

    Kolb, H.J. et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76, 2462–2465 (1990).

    CAS  PubMed  Google Scholar 

  4. 4

    Molldrem, J.J. et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat. Med. 6, 1018–1023 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Horowitz, M.M. et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75, 555–562 (1990).

    CAS  PubMed  Google Scholar 

  6. 6

    Truitt, R.L. & Johnson, B.D. Principles of graft-vs.-leukemia reactivity. Biol. Blood Marrow Transplant. 1, 61–68 (1995).

    CAS  PubMed  Google Scholar 

  7. 7

    Weiden, P.L. et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N. Engl. J. Med. 300, 1068–1073 (1979).

    CAS  Article  Google Scholar 

  8. 8

    Ferrara, J., Deeg, H.J. & Burakoff, S.J. Graft-vs.-Host Disease (Marcel Dekker, New York, 1997).

    Google Scholar 

  9. 9

    Ho, V.T. & Soiffer, R.J. The history and future of T-cell depletion as graft-versus-host disease prophylaxis for allogeneic hematopoietic stem cell transplantation. Blood 98, 3192–3204 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Siadak, M. & Sullivan, K.M. The management of chronic graft-versus-host disease. Blood Rev. 8, 154–160 (1994).

    CAS  Article  Google Scholar 

  11. 11

    Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  12. 12

    Shevach, E.M. Certified professionals: CD4+CD25+ suppressor T cells. J. Exp. Med. 193, F41–46 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Shevach, E.M., Thornton, A. & Suri-Payer, E. T lymphocyte-mediated control of autoimmunity. Novartis Found. Symp. 215, 200–211, 211–230 (1998).

    CAS  PubMed  Google Scholar 

  14. 14

    Shevach, E.M. Regulatory T cells in autoimmmunity. Annu. Rev. Immunol. 18, 423–449 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Annacker, O. et al. CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J. Immunol. 166, 3008–3018 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Murakami, M., Sakamoto, A., Bender, J., Kappler, J. & Marrack, P. CD25+CD4+ T cells contribute to the control of memory CD8+ T cells. Proc. Natl. Acad. Sci. USA 99, 8832–8837 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Kingsley, C.I., Karim, M., Bushell, A.R. & Wood, K.J. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J. Immunol. 168, 1080–1086 (2002).

    CAS  Article  Google Scholar 

  19. 19

    Field, E.H. et al. CD4+CD25+ regulatory cells in acquired MHC tolerance. Immunol. Rev. 182, 99–112 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Taylor, P.A., Lees, C.J. & Blazar, B.R. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99, 3493–3499 (2002).

    CAS  Article  Google Scholar 

  21. 21

    Cohen, J.L., Trenado, A., Vasey, D., Klatzmann, D. & Salomon, B.L. CD4+CD25+ immunoregulatory T cells: new therapeutics for graft-versus-host disease. J. Exp. Med. 196, 401–406 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Hoffmann, P., Ermann, J., Edinger, M., Fathman, C.G. & Strober, S. Donor-type CD4+CD25+ regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J. Exp. Med. 196, 389–399 (2002).

    CAS  Article  Google Scholar 

  23. 23

    Hakim, F.T.M. & Crystal, L. The immune system: effector and target of graft-versus-host disease. in Graft-vs-Host Disease (eds. Ferrara, J.L.M., Deeg, H.J. & Burakoff, S.J.) 257–289 (Marcel Dekker Inc., New York, 1997).

    Google Scholar 

  24. 24

    Sprent, J., Schaefer, M., Lo, D. & Korngold, R. Properties of purified T cell subsets. II. In vivo responses to class I vs. class II H-2 differences. J. Exp. Med. 163, 998–1011 (1986).

    CAS  Article  Google Scholar 

  25. 25

    Contag, P.R., Olomu, I.N., Stevenson, D.K. & Contag, C.H. Bioluminescent indicators in living mammals. Nat. Med. 4, 245–247 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Contag, C.H., Jenkins, D., Contag, P.R. & Negrin, R.S. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2, 41–52 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Costa, G.L. et al. Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J. Immunol. 167, 2379–2387 (2001).

    CAS  Article  Google Scholar 

  28. 28

    Sweeney, T.J. et al. Visualizing the kinetics of tumor-cell clearance in living animals. Proc. Natl. Acad. Sci. USA 96, 12044–12049 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Edinger, M. et al. Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia 1, 303–310 (1999).

    CAS  Article  Google Scholar 

  30. 30

    Edinger, M. et al. Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood 101, 640–648 (2003).

    CAS  Article  Google Scholar 

  31. 31

    Schmaltz, C. et al. Differential use of Fas ligand and perforin cytotoxic pathways by donor T cells in graft-versus-host disease and graft-versus-leukemia effect. Blood 97, 2886–2895 (2001).

    CAS  Article  Google Scholar 

  32. 32

    Warnke, R.A. et al. The pathology and homing of a transplantable murine B cell leukemia (BCL1). J. Immunol. 123, 1181–1188 (1979).

    CAS  PubMed  Google Scholar 

  33. 33

    Zeng, D. et al. Unique patterns of surface receptors, cytokine secretion, and immune functions distinguish T cells in the bone marrow from those in the periphery: impact on allogeneic bone marrow transplantation. Blood 99, 1449–1457 (2002).

    CAS  Article  Google Scholar 

  34. 34

    Ferrara, J.L., Levy, R. & Chao, N.J. Pathophysiologic mechanisms of acute graft-vs.-host disease. Biol. Blood Marrow Transplant. 5, 347–356 (1999).

    CAS  Article  Google Scholar 

  35. 35

    Krenger, W., Hill, G.R. & Ferrara, J.L. Cytokine cascades in acute graft-versus-host disease. Transplantation 64, 553–558 (1997).

    CAS  Article  Google Scholar 

  36. 36

    Thornton, A.M. & Shevach, E.M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    CAS  Article  Google Scholar 

  37. 37

    Ermann, J. et al. CD4+CD25+ T cells facilitate the induction of T cell anergy. J. Immunol. 167, 4271–4275 (2001).

    CAS  Article  Google Scholar 

  38. 38

    Piccirillo, C.A. & Shevach, E.M. Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J. Immunol. 167, 1137–1140 (2001).

    CAS  Article  Google Scholar 

  39. 39

    Annunziato, F. et al. Phenotype, localization, and mechanism of suppression of CD4+CD25+ human thymocytes. J. Exp. Med. 196, 379–387 (2002).

    CAS  Article  Google Scholar 

  40. 40

    Teshima, T. et al. Acute graft-versus-host disease does not require alloantigen expression on host epithelium. Nat. Med. 8, 575–581 (2002).

    CAS  Article  Google Scholar 

  41. 41

    Suri-Payer, E., Amar, A.Z., Thornton, A.M. & Shevach, E.M. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol. 160, 1212–1218 (1998).

    CAS  PubMed  Google Scholar 

  42. 42

    Dieckmann, D., Bruett, C.H., Ploettner, H., Lutz, M.B. & Schuler, G. Human CD4+CD25+ regulatory, contact-dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells. J. Exp. Med. 196, 247–253 (2002).

    CAS  Article  Google Scholar 

  43. 43

    Morrison, S.J. & Weissman, I.L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).

    CAS  Article  Google Scholar 

  44. 44

    Ailles, L. et al. Molecular evidence of lentiviral vector-mediated gene transfer into human self-renewing, multi-potent, long-term NOD/SCID repopulating hematopoietic cells. Mol. Ther. 6, 615–626 (2002).

    CAS  Article  Google Scholar 

Download references


We thank C. Arber for assistance with stem cell isolation, L. Ailles for the lentiviral vector constructs and C.H. Contag for access to the imaging equipment. This work was supported in part by NIH grants P01-CA49605, HL57443 and RO1s CA8006, HL58520, CA92225, CA65237, DK61925 and AI49903, and by fellowship grants from the Clinique LaPrairie Research Foundation (P.H.) and the Dr. Mildred Scheel Stifung (M.E.).

Author information



Corresponding author

Correspondence to Robert S Negrin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Edinger, M., Hoffmann, P., Ermann, J. et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 9, 1144–1150 (2003).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing