Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bone marrow as a priming site for T-cell responses to blood-borne antigen

Abstract

Although bone marrow is known as a primary lymphoid organ, its potential to serve as a secondary immune organ has hardly been explored. Here we demonstrate that naive, antigen-specific T cells home to bone marrow, where they can be primed. Antigen presentation to T cells in bone marrow is mediated via resident CD11c+ dendritic cells. They are highly efficient in taking up exogenous blood-borne antigen and processing it via major histocompatibility complex class I and class II pathways. T-cell activation correlates with dendritic cell–T cell clustering in bone marrow stroma. Primary CD4+ and CD8+ T-cell responses generated in bone marrow occur in the absence of secondary lymphoid organs. The responses are not tolerogenic and result in generation of cytotoxic T cells, protective anti-tumor immunity and immunological memory. These findings highlight the uniqueness of bone marrow as an organ important for hemato- and lymphopoiesis and for systemic T cell–mediated immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Homing of naive T cells to bone marrow.
Figure 2: Antigen-presenting capacity of resident dendritic cells in bone marrow.
Figure 3: Primary T-cell response in bone marrow.
Figure 4: Cluster formation between T cells and antigen-presenting dendritic cells in bone marrow.
Figure 5: Generation of cytotoxic T cells in bone marrow of mice lacking secondary lymphoid organs and its dependence on T-cell homing to bone marrow.
Figure 6: Protective systemic antitumor immunity in mice lacking secondary lymphoid organs.

Similar content being viewed by others

References

  1. Fu, Y.-X. & Chaplin, D.D. Development and maturation of secondary lymphoid tissues. Annu. Rev. Immunol. 17, 399–458 (1999).

    Article  CAS  Google Scholar 

  2. Lanzavecchia, A. & Sallusto, F. The instructive role of dendritic cells on T cell responses: lineages, plasticity and kinetics. Curr. Opin. Immunol. 13, 291–296 (2001).

    Article  CAS  Google Scholar 

  3. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  Google Scholar 

  4. Osmond, D.G. Production and selection of B lymphocytes in bone marrow: lymphostromal interactions and apoptosis in normal, mutant and transgenic mice. Adv. Exp. Med. Biol. 355, 15–20 (1994).

    Article  CAS  Google Scholar 

  5. Koni, P.A. et al. Conditional vascular cell adhesion molecule 1 deletion in mice: impaired lymphocyte migration to bone marrow. J. Exp. Med. 193, 741–753 (2001).

    Article  CAS  Google Scholar 

  6. Khazaie, K. et al. Persistence of dormant tumor cells in the bone marrow of tumor cell vaccinated mice correlates with long-term immunological protection. Proc. Natl. Acad. Sci. USA 91, 7430–7434 (1994).

    Article  CAS  Google Scholar 

  7. Masopust, D., Vezys, V., Marzo, A.L. & Lefrancois, L. Preferential localization of effector memory cells in non-lymphoid tissue. Science, 291, 2413–2416 (2001).

    Article  CAS  Google Scholar 

  8. Marshall, D.R. et al. Measuring the diaspora for virus-specific CD8+ T cells. Proc. Natl. Acad. Sci. USA 98, 6313–6318 (2001).

    Article  CAS  Google Scholar 

  9. Kuroda, M.J. et al. Simian immunodeficiency virus-specific cytotoxic T lymphocytes and cell-associated viral RNA levels in distinct lymphoid compartments of SIV mac-infected rhesus monkeys. Blood 96, 1474–1479 (2000).

    CAS  PubMed  Google Scholar 

  10. Feuerer, M. et al. Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int. J. Cancer 92, 96–105 (2001).

    Article  CAS  Google Scholar 

  11. Müller, M. et al. EblacZ tumor dormancy in bone marrow and lymph nodes: active control of proliferating tumor cells by CD8+ immune T cells. Cancer Res. 58, 5439–5446 (1998).

    PubMed  Google Scholar 

  12. Feuerer, M. et al. Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nat. Med. 7, 452–458 (2001).

    Article  CAS  Google Scholar 

  13. Kearney, E.R., Pape, K.A., Loh, D.Y. & Jenkins, M.K. Visualization of peptide-specific cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327 (1994).

  14. Limmer, A. et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T cell tolerance. Nat. Med. 6, 1348–1354 (2000).

    Article  CAS  Google Scholar 

  15. Sanderson, S. & Shastri, N. LacZ inducible antigen/MHC-specific T cell hybrids. Int. Immunol. 6, 369–376 (1994).

    Article  CAS  Google Scholar 

  16. Förg, P., von Hoegen, P. & Schirrmacher, V. Superiority of the ear pinna over muscle tissue as site for DNA vaccination. Gene Ther. 5, 789–797 (1998).

    Article  Google Scholar 

  17. Miyawaki, S. et al. A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice. Eur. J. Immunol. 24, 429–434 (1994).

    Article  CAS  Google Scholar 

  18. Hommel, M. & Kyewski, B. Dynamic changes during the immune response in T cell-APC clusters isolated from lymph nodes. J. Exp. Med. 197, 269–280 (2003).

    Article  CAS  Google Scholar 

  19. Aichele, P. et al. Peptide antigen treatment of naïve and virus-immune mice: antigen-specific tolerance versus immunopathology. Immunity, 6, 519–529 (1997).

    Article  CAS  Google Scholar 

  20. Coles, R.M., Mueller, S.N., Heath, W.R., Carbone, F.R. & Brooks, A.G. Progression of armed CTL from draining lymph node to spleen shortly after localized infection with herpes simplex virus 1. J. Immunol. 168, 834–838 (2002).

    Article  CAS  Google Scholar 

  21. Berlin-Rufenach, C. et al. Lymphocyte migration in lymphocyte function-associated antigen (LFA)-1-deficient mice. J. Exp. Med. 189, 1467–1478 (1999).

    Article  CAS  Google Scholar 

  22. Tripp, R.A., Topham, D.J., Watson, S.R. & Doherty, P.C. Bone marrow can function as a lymphoid organ during a primary immune response under conditions of disrupted lymphocyte trafficking. J. Immunol. 158, 3716–3720 (1997).

    CAS  PubMed  Google Scholar 

  23. Bain, B.J., Clark, D.M., Lampert, I.A. & Wilkins, B.S. Bone Marrow Pathology. edn. 3 114–116 (Blackwell Science, London, 2001).

    Book  Google Scholar 

  24. Ruedl, C., Koebel, P., Bachmann, M., Hess, M. & Karjalainen, K. Anatomical origin of dendritic cells determines their life span in peripheral lymph nodes. J. Immunol. 165, 4910–4916 (2000).

    Article  CAS  Google Scholar 

  25. Kamath, A.T. et al. The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J. Immunol. 165, 6762–6770 (2000).

    Article  CAS  Google Scholar 

  26. Norbury, C.C., Hewlett, L.J., Prescott, A.R., Sharstri, N. & Watts, C. Class I MHC presentation of exogenous soluble antigen via macropinocytosis in bone marrow macrophages. Immunity 43, 783–791 (1995).

    Article  Google Scholar 

  27. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  Google Scholar 

  28. den Haan, J.M.M., Lehar, S.M. & Bevan, M.J. CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192, 1685–1695 (2000).

    Article  CAS  Google Scholar 

  29. Kaech, S.M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat. Immunol. 2, 415–422 (2001).

    Article  CAS  Google Scholar 

  30. Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A. & Rocha, B. Response of naïve and memory CD8+ T cells to antigen stimulation in vivo. Nat. Immunol. 1, 47–53 (2000).

    Article  CAS  Google Scholar 

  31. Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  Google Scholar 

  32. Karrer, U. et al. On the key role of secondary lymphoid organs in antiviral immune responses studied in alymphoplastic (aly/aly) and spleenless (Hox11−/−) mutant mice. J. Exp. Med. 185, 2157–2170 (1997).

    Article  CAS  Google Scholar 

  33. Lakkis, F.G., Arakelov, A., Konieczny, B.T. & Inoue, Y. Immunologic ignorance of vascularized organ transplants in the absence of secondary lymphoid tissue. Nat. Med. 6, 686–688 (2000).

    Article  CAS  Google Scholar 

  34. Chin, R., Zhou, P., Alegre, M.-L. & Fu, Y.X. Confounding factors complicate conclusions in aly model. Nat. Med. 7, 1165–1166 (2001).

    Article  CAS  Google Scholar 

  35. Li, M. et al. Cell-associated ovalbumin is cross-presented much more efficiently than soluble ovalbumin in vivo. J. Immunol. 166, 6099–6103 (2001).

    Article  CAS  Google Scholar 

  36. Krüger, A., Schirrmacher, V. & von Hoegen, P. Scattered micrometastasis visualized at the single cell level: detection and re-isolation of lacZ labeled metastasized lymphoma cells. Int. J. Cancer 58, 275–284 (1994)

    Article  Google Scholar 

  37. Robertson, J.M., Jensen, P.E. & Evavold, B.D. D011.10 and OT-II T cells recognize a C-terminal ovalbumin 323-339 epitope. J. Immunol. 164, 4706–4712 (2000).

    Article  CAS  Google Scholar 

  38. Kärre, K., Ljunggren, H.G., Piontek, G. & Kiessling, R. Selective rejection of H-2 deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678 (1986).

    Article  Google Scholar 

  39. Falo, L.D. Jr., Kovacsovics-Bankowski, M., Thompson, K. & Rock, K.L. Targeting antigen into the phagocytic pathway in vivo induces protective tumor immunity. Nat. Med. 1, 649–653 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Schüler and K. Hogquist for OT-I/Rag1−/− mice; R. Zinkernagel for Map3k14aly/aly mice; G. Moldenhauer and P. Altevogt for antibodies; G. Kübelbeck and K. Tauber for RMA-OVA cells; P. Angel for a construct with a ubiquitin promoter; A. Griesbach for mouse splenectomy; K. Hexel for help with cell sorting; M. Gehring for technical assistance; and H. Müssig for secretarial assistance. We thank the NIAID Tetramer Facility and NIH AIDS Research and Reference Reagent Program for providing H-2Ld/peptide tetrameric complexes. We thank the M. Scheel-Stiftung (no. 10-1589-Schi5) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Schirrmacher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feuerer, M., Beckhove, P., Garbi, N. et al. Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med 9, 1151–1157 (2003). https://doi.org/10.1038/nm914

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm914

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing