Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia


Neuronal death in cerebral ischemia is largely due to excitotoxic mechanisms, which are known to activate the c-Jun N-terminal kinase (JNK) pathway. We have evaluated the neuroprotective power of a cell-penetrating, protease-resistant peptide that blocks the access of JNK to many of its targets. We obtained strong protection in two models of middle cerebral artery occlusion (MCAO): transient occlusion in adult mice and permanent occlusion in 14-d-old rat pups. In the first model, intraventricular administration as late as 6 h after occlusion reduced the lesion volume by more than 90% for at least 14 d and prevented behavioral consequences. In the second model, systemic delivery reduced the lesion by 78% and 49% at 6 and 12 h after ischemia, respectively. Protection correlated with prevention of an increase in c-Jun activation and c-Fos transcription. In view of its potency and long therapeutic window, this protease-resistant peptide is a promising neuroprotective agent for stroke.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: In vitro kinase assays showing sensitivity and specificity of JNK-inhibitory peptides.
Figure 2: Effects of NMDA on cortical neurons.
Figure 3: Time course of NMDA neurotoxicity and neuroprotection by L-JNKI-1, D-JNKI-1 and two control peptides, 'Tat-empty' (Tat sequence without JBD20) and 'L-JNKI-1 mut' (L-JNKI-1 with six amino acids mutated to alanine20).
Figure 4: Transient ischemia in mice.
Figure 5: Protection by D-JNKI-1 against permanent focal ischemia in P14 rats.


  1. 1

    The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 333, 1581–1587 (1995).

  2. 2

    Namura, S. et al. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J. Neurosci. 18, 3659–3668 (1998).

    CAS  Article  Google Scholar 

  3. 3

    Hara, H. et al. Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc. Natl. Acad. Sci. USA 94, 2007–2012 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Morris, D.C. et al. Extension of the therapeutic window for recombinant tissue plasminogen activator with argatroban in a rat model of embolic stroke. Stroke 32, 2635–2640 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Iadecola, C. & Alexander, M. Cerebral ischemia and inflammation. Curr. Opin. Neurol. 14, 89–94 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Fink, K. et al. Prolonged therapeutic window for ischemic brain damage caused by delayed caspase activation. J. Cereb. Blood Flow Metab. 18, 1071–1076 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Gladstone, D.J., Black, S.E. & Hakim, A.M. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33, 2123–2136 (2002).

    Article  Google Scholar 

  8. 8

    Brott, T. & Bogousslavsky, J. Treatment of acute ischemic stroke. N. Engl. J. Med. 343, 710–722 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Petty, M.A. & Wettstein, J.G. White matter ischaemia. Brain Res. Rev. 31, 58–64 (1999).

    CAS  Article  Google Scholar 

  10. 10

    Imai, H., McCulloch, J., Graham, D.I., Masayasu, H. & Macrae, I.M. New method for the quantitative assessment of axonal damage in focal cerebral ischemia. J. Cereb. Blood Flow Metab. 22, 1080–1089 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Dirnagl, U., Iadecola, C. & Moskowitz, M.A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22, 391–397 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Zipfel, G.J., Babcock, D.J., Lee, J.M. & Choi, D.W. Neuronal apoptosis after CNS injury: the roles of glutamate and calcium. J. Neurotrauma 17, 857–869 (2000).

    CAS  Article  Google Scholar 

  13. 13

    Yam, P.S., Dunn, L.T., Graham, D.I., Dewar, D. & McCulloch, J. NMDA receptor blockade fails to alter axonal injury in focal cerebral ischemia. J. Cereb. Blood Flow Metab. 20, 772–779 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Wu, D.C., Ye, W., Che, X.M. & Yang, G.Y. Activation of mitogen-activated protein kinases after permanent cerebral artery occlusion in mouse brain. J. Cereb. Blood Flow Metab. 20, 1320–1330 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Saporito, M.S. et al. Preservation of cholinergic activity and prevention of neuron death by CEP-1347/KT-7515 following excitotoxic injury of the nucleus basalis magnocellularis. Neuroscience 86, 461–472 (1998).

    CAS  Article  Google Scholar 

  16. 16

    Savinainen, A., Garcia, E.P., Dorow, D., Marshall, J. & Liu, Y.F. Kainate receptor activation induces mixed lineage kinase-mediated cellular signaling cascades via post-synaptic density protein 95. J. Biol. Chem. 276, 11382–11386 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Yang, D.D. et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389, 865–870 (1997).

    CAS  Article  Google Scholar 

  18. 18

    Kuan, C.Y. et al. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22, 667–676 (1999).

    CAS  Article  Google Scholar 

  19. 19

    Behrens, A., Sibilia, M. & Wagner, E.F. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat. Genet. 21, 326–329 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Bonny, C., Oberson, A., Negri, S., Sauser, C. & Schorderet, D.F. Cell-permeable peptide inhibitors of JNK novel blockers of β-cell death. Diabetes 50, 77–82 (2001).

    CAS  Article  Google Scholar 

  21. 21

    Barr, R.K., Kendrick, T.S. & Bogoyevitch, M.A. Identification of the critical features of a small peptide inhibitor of JNK activity. J. Biol. Chem. 277, 10987–10997 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Vives, E., Brodin, P. & Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010–16017 (1997).

    CAS  Article  Google Scholar 

  23. 23

    Steiner, D.F., Smeekens, S.P., Ohagi, S. & Chan, S.J. The new enzymology of precursor processing endoproteases. J. Biol. Chem. 267, 23435–23438 (1992).

    CAS  PubMed  Google Scholar 

  24. 24

    Brugidou, J., Legrand, C., Mery, J. & Rabie, A. The retro-inverso form of a homeobox-derived short peptide is rapidly internalised by cultured neurones: a new basis for an efficient intracellular delivery system. Biochem. Biophys. Res. Commun. 214, 685–693 (1995).

    CAS  Article  Google Scholar 

  25. 25

    Bennett, B.L. et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA 98, 13681–13686 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Ko, H.W. et al. Ca2+-mediated activation of c-Jun N-terminal kinase and nuclear factor kappa B by NMDA in cortical cell cultures. J. Neurochem. 71, 1390–1395 (1998).

    CAS  Article  Google Scholar 

  27. 27

    Coffey, E.T., Hongisto, V., Dickens, M., Davis, R.J. & Courtney, M.J. Dual roles for c-Jun N-terminal kinase in developmental and stress responses in cerebellar granule neurons. J. Neurosci. 20, 7602–7613 (2000).

    CAS  Article  Google Scholar 

  28. 28

    Cavigelli, M., Dolfi, F., Claret, F.X. & Karin, M. Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO J. 14, 5957–5964 (1995).

    CAS  Article  Google Scholar 

  29. 29

    Schwarze, S.R., Ho, A., Vocero-Akbani, A. & Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572 (1999).

    CAS  Article  Google Scholar 

  30. 30

    Dawson, D.A., Wadsworth, G. & Palmer, A.M. A comparative assessment of the efficacy and side-effect liability of neuroprotective compounds in experimental stroke. Brain Res. 892, 344–350 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Iadecola, C., Zhang, F. & Xu, X. Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am. J. Physiol. Regul. Integr. Comp. Physiol. 268, R286–R292 (1995).

    CAS  Article  Google Scholar 

  32. 32

    Hossmann, K.A. Glutamate-mediated injury in focal cerebral-ischemia - the excitotoxin hypothesis revised. Brain Pathol. 4, 23–36 (1994).

    CAS  Article  Google Scholar 

  33. 33

    Hardingham, G.E. & Bading, H. The yin and yang of NMDA receptor signalling. Trends Neurosci. 26, 81–89 (2003).

    CAS  Article  Google Scholar 

  34. 34

    Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Curtis, J. & Finkbeiner, S. Sending signals from the synapse to the nucleus: possible roles for CaMK, Ras/ERK, and SAPK pathways in the regulation of synaptic plasticity and neuronal growth. J. Neurosci. Res. 58, 88–95 (1999).

    CAS  Article  Google Scholar 

  36. 36

    Schauwecker, P.E. Seizure-induced neuronal death is associated with induction of c-Jun N-terminal kinase and is dependent on genetic background. Brain Res. 884, 116–128 (2000).

    CAS  Article  Google Scholar 

  37. 37

    Zhu, X. et al. Activation and redistribution of c-Jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer's disease. J. Neurochem. 76, 435–441 (2001).

    CAS  Article  Google Scholar 

  38. 38

    Kim, H.S. et al. Carboxyl-terminal fragment of Alzheimer's APP destabilizes calcium homeostasis and renders neuronal cells vulnerable to excitotoxicity. FASEB J. 14, 1508–1517 (2000).

    CAS  PubMed  Google Scholar 

  39. 39

    Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate- phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    CAS  Article  Google Scholar 

  40. 40

    Huang, Z. et al. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265, 1883–1885 (1994).

    CAS  Article  Google Scholar 

  41. 41

    Ma, J., Qiu, J., Hirt, L., Dalkara, T. & Moskowitz, M.A. Synergistic protective effect of caspase inhibitors and bFGF against brain injury induced by transient focal ischaemia. Br. J. Pharmacol. 133, 345–350 (2001).

    CAS  Article  Google Scholar 

Download references


This work was supported by grants 31-50598.97, 32-54119.98, 31-61736.00, 32-65139.01 and 3200-68306.02 from the Swiss National Science Foundation, the San Paolo Bank (Italy) and the Alzheimer Project (Italian Ministry of Health). We are particularly grateful to P. Nicod and the Botnar Foundation for human and financial support. We thank E. Bernardi, I. Favre, V. Mottier and A. Oberson for assistance; R. Kraftsik for help with computation and statistics; and J.-Y. Chatton and A. Volterra for critical comments on the manuscript.

Author information



Corresponding author

Correspondence to Tiziana Borsello.

Ethics declarations

Competing interests

C.B. receives partial remuneration from the vendor, Alexis, for the sale of D-JNKI-1 and L-JNKI-1.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Borsello, T., Clarke, P., Hirt, L. et al. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9, 1180–1186 (2003).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing