Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors

An Erratum to this article was published on 01 July 2003

Abstract

Kaposi sarcoma (KS) is a vascular tumor that can develop in recipients of solid tissue transplants as a result of either primary infection or reactivation of a gammaherpesvirus, the KS- associated herpesvirus, also known as human herpesvirus-8 (HHV-8). We studied whether HHV-8 and the elusive KS progenitor cells could be transmitted from the donor through the grafts. We used a variety of molecular, cytogenetic, immunohistochemical and immunofluorescence methods to show that the HHV-8–infected neoplastic cells in post-transplant KS from five of eight renal transplant patients harbored either genetic or antigenic markers of their matched donors. These data suggest the use of donor-derived HHV-8–specific T cells for the control of post-transplant KS.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Micromanipulation of KS tumor cells and PCR detection of donor genetic markers in isolated tumor cells from the renal recipients.
Figure 2: Microsatellite analysis at the amelogenin and D8S1179 loci from the microdissected KS, unaffected epidermis and peripheral blood from patients 1–3, 7 and 8.
Figure 3: Detection of Y chromosome by fluorescence in situ hybridization in patient 3.
Figure 4: Detection of donor HLA class I antigen by immunohistochemistry and double immunofluorescence in patient 6.

References

  1. 1

    Antman, K. & Chang, Y. Kaposi's sarcoma. N. Engl. J. Med. 342, 1027–1038 (2000).

    CAS  Article  Google Scholar 

  2. 2

    Boshoff, C. et al. Kaposi's sarcoma-associated herpesvirus infects endothelial and spindle cells. Nat. Med. 1, 1274–1278 (1995).

    CAS  Article  Google Scholar 

  3. 3

    Parravicini, C. et al. Risk of Kaposi's sarcoma-associated herpesvirus transmission from donor allografts among Italian post-transplant Kaposi's sarcoma patients. Blood 90, 2826–2829 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Regamey, N. et al. Transmission of human herpesvirus 8 infection from renal-transplant donors to recipients. N. Engl. J. Med. 339, 1358–1363 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Luppi, M. et al. Bone marrow failure associated with human herpesvirus 8 infection after transplantation. N. Engl. J. Med. 343, 1378–1385 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Luppi, M. et al. Molecular evidence of organ-related transmission of Kaposi sarcoma-associated herpesvirus or human herpesvirus-8 in transplant patients. Blood 96, 3279–3281 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Sarid, R. et al. Detection of human herpesvirus-8 DNA in kidney allografts prior to the development of Kaposi's sarcoma. Clin. Infect. Dis. 32, 1502–1505 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Papadopoulos, E.B. et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogenic bone marrow transplantation. N. Engl. J. Med. 330, 1185–1191 (1994).

    CAS  Article  Google Scholar 

  9. 9

    Rooney, C.M. et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 345, 9–13 (1995).

    CAS  Article  Google Scholar 

  10. 10

    Kanzler, H. et al. Hodgkin and Reed-Sternberg-like cells in B-cell chronic lymphocytic leukemia represent the outgrowth of single germinal-center B-cell-derived clones: potential precursors of Hodgkin and Reed-Sternberg cells in Hodgkin's disease. Blood 95, 1023–1031 (2000).

    CAS  PubMed  Google Scholar 

  11. 11

    Maloney, S. et al. Microchimerism of maternal origin persists into adult life. J. Clin. Invest. 104, 41–47 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Kruskall, M.S. et al. Survival of transfused donor white blood cells in HIV-infected recipients. Blood 98, 272–279 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Qian, J. et al. Comparison of fluorescence in situ hybridization analysis of isolated nuclei and routine histological sections from paraffin-embedded prostatic adenocarcinoma specimens. Am. J. Pathol. 149, 1193–1199 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Dictor, M. & Andersson, C. Lymphaticovenous differentiation in Kaposi's sarcoma. Cellular phenotypes by stage. Am. J. Pathol. 130, 411–417 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Rabkin, C.S. et al. Monoclonal origin of multicentric Kaposi's sarcoma lesions. N. Engl. J. Med. 336, 988–993 (1997).

    CAS  Article  Google Scholar 

  16. 16

    Dupin, N. et al. Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease and primary effusion lymphoma. Proc. Natl. Acad. Sci. USA 96, 4546–4551 (1999).

    CAS  Article  Google Scholar 

  17. 17

    Browning, P.J. et al. Identification and culture of Kaposi's sarcoma-like spindle cells from peripheral blood of human immunodeficiency virus-1-infected individuals and normal controls. Blood 84, 2711–2720 (1994).

    CAS  PubMed  Google Scholar 

  18. 18

    Lin, Y., Weisdorf, D.J., Solovey, A. & Hebbel, R.P. Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin. Invest. 105, 71–77 (2000).

    CAS  Article  Google Scholar 

  19. 19

    Peichev, M. et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95, 952–958 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Rao, A.S. et al. The two-way paradigm of transplantation immunology. Clin. Immunol. Immunopathol. 80 (suppl.), S46–S51 (1996).

    CAS  Article  Google Scholar 

  21. 21

    Bodo, I. et al. Donor-derived acute promyelocytic leukemia in a liver-transplant recipient. N. Engl. J. Med. 341, 807–813 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Küppers, R. et al. Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. EMBO J. 12, 4955–4967 (1993).

    Article  Google Scholar 

  23. 23

    Kokova, M. et al. Detection of Y chromosome sequences in Turner's syndrome by Southern blot analysis of amplified DNA. Lancet 342, 140–143 (1993).

    Article  Google Scholar 

  24. 24

    Lee, T.-H. et al. Survival of donor leukocyte subpopulations in immunocompetent transfusion recipients: frequent long-term microchimerism in severe trauma patients. Blood 93, 3127–3139 (1999).

    CAS  PubMed  Google Scholar 

  25. 25

    Chang, Y. et al. Identification of herpesvirus DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266, 1865–1869 (1994).

    CAS  Article  Google Scholar 

  26. 26

    Masood, S. et al. Reproducibility of LSI HER-2/neu SpectrumOrange and CEP 17 SpectrumGreen dual color deoxyribonucleic acid probe kit. For enumeration of gene amplification in paraffin-embedded specimens: a multicenter clinical validation study. Ann. Clin. Lab. Sci. 28, 215–223 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Associazione Italiana per la Ricerca sul Cancro, Milan, Italy (M.L.). We thank G. Santagostino, R. Ricci, L. Bignardi, F. Cardarelli, A. Savazzi, G. Pizov and D. Rubinger for providing the KS biopsies and the clinical data from the renal transplant patients; G. Beduschi for contributing to the microsatellite analysis; and E. Cesarman for enlightening discussion.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mario Luppi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barozzi, P., Luppi, M., Facchetti, F. et al. Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors. Nat Med 9, 554–561 (2003). https://doi.org/10.1038/nm862

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing