Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E

Abstract

We studied whether circulating activated platelets and platelet–leukocyte aggregates cause the development of atherosclerotic lesions in apolipoprotein-E–deficient (Apoe−/−) mice. Circulating activated platelets bound to leukocytes, preferentially monocytes, to form platelet–monocyte/leukocyte aggregates. Activated platelets and platelet–leukocyte aggregates interacted with atherosclerotic lesions. The interactions of activated platelets with monocytes and atherosclerotic arteries led to delivery of the platelet-derived chemokines CCL5 (regulated on activation, normal T cell expressed and secreted, RANTES) and CXCL4 (platelet factor 4) to the monocyte surface and endothelium of atherosclerotic arteries. The presence of activated platelets promoted leukocyte binding of vascular cell adhesion molecule-1 (VCAM-1) and increased their adhesiveness to inflamed or atherosclerotic endothelium. Injection of activated wild-type, but not P-selectin–deficient, platelets increased monocyte arrest on the surface of atherosclerotic lesions and the size of atherosclerotic lesions in Apoe−/− mice. Our results indicate that circulating activated platelets and platelet–leukocyte/monocyte aggregates promote formation of atherosclerotic lesions. This role of activated platelets in atherosclerosis is attributed to platelet P-selectin–mediated delivery of platelet-derived proinflammatory factors to monocytes/leukocytes and the vessel wall.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interactions of activated platelets with leukocytes in vivo.
Figure 2: Interactions of activated platelets with atherosclerotic arteries.
Figure 3: Deposition of platelet-derived proinflammatory factors on atherosclerotic endothelium.
Figure 4: Deposition of platelet-derived proinflammatory mediators on the surface of monocytes.
Figure 5: Monocyte/leukocyte–endothelial interactions in the presence of activated platelets.
Figure 6: Repeated injections of wild-type but not Selp−/− activated platelets or the supernatant of activated wild-type platelets exacerbate atherosclerosis in Apoe−/− mice.

Similar content being viewed by others

References

  1. Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    CAS  PubMed  Google Scholar 

  2. Ross, R. & Glomset, J.A. Atherosclerosis and the arterial smooth muscle cell. Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science 180, 1332–1339 (1973).

    Article  CAS  Google Scholar 

  3. Friedman, R.J. et al. The effect of thrombocytopenia on experimental arteriosclerotic lesion formation in rabbits. Smooth muscle cell proliferation and re-endothelialization. J. Clin. Invest. 60, 1191–1201 (1977).

    Article  CAS  Google Scholar 

  4. Mendelsohn, M.E.F. & Loscalzo, J. Role of platelets in cholesteryl ester formation by U-937 cells. J. Clin. Invest. 81, 62–68 (1988).

    Article  CAS  Google Scholar 

  5. Johnson, R.C. et al. Absence of P-selectin delays fatty streak formation in mice. J. Clin. Invest. 99, 1037–1043 (1997).

    Article  CAS  Google Scholar 

  6. Cybulsky, M.I. et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J. Clin. Invest. 107, 1255–1262 (2001).

    Article  CAS  Google Scholar 

  7. Gu, L. et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell 2, 275–281 (1998).

    Article  CAS  Google Scholar 

  8. Boring, L., Gosling, J., Cleary, M. & Charo, I.F. Decreased lesion formation in CCR2(−/−) mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).

    Article  CAS  Google Scholar 

  9. Fitzgerald, D.J., Roy, L., Catella, F. & Fitzgerald, G.A. Platelet activation in unstable coronary disease. N. Engl. J. Med. 315, 983–989 (1986).

    Article  CAS  Google Scholar 

  10. Trip, M.D., Cats, V.M., van Capelle, F.J. & Vreeken, J. Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N. Engl. J. Med. 322, 1549–1554 (1990).

    Article  CAS  Google Scholar 

  11. Becker, R.C., Tracy, R.P., Bovill, E.G., Mann, K.G. & Ault, K. The clinical use of flow cytometry for assessing platelet activation in acute coronary syndromes. TIMI-III Thrombosis and Anticoagulation Group. Coron. Artery Dis. 5, 339–345 (1994).

    Article  CAS  Google Scholar 

  12. van Zanten, G.H. et al. Increased platelet deposition on atherosclerotic coronary arteries. J. Clin. Invest. 93, 615–632 (1994).

    Article  CAS  Google Scholar 

  13. Furman, M.I. et al. Increased platelet reactivity and circulating monocyte-platelet aggregates in patients with stable coronary artery disease. J. Am. College Cardiol. 31, 352–358 (1998).

    Article  CAS  Google Scholar 

  14. Broijersen, A., Hamsten, A., Eriksson, M., Angelin, B. & Hjemdahl, P. Platelet activity in vivo in hyperlipoproteinemia—importance of combined hyperlipidemia. Thromb. Haemost. 79, 268–275 (1998).

    Article  CAS  Google Scholar 

  15. Broijersen, A., Karpe, F., Hamsten, A., Goodall, A.H. & Hjemdahl, P. Alimentary lipemia enhances the membrane expression of platelet P-selectin without affecting other markers of platelet activation. Atherosclerosis 137, 107–113 (1998).

    Article  CAS  Google Scholar 

  16. Hamburger, S.A. & McEver, R.P. GMP-140 mediates adhesion of stimulated platelets to neutrophils. Blood 75, 550–554 (1990).

    CAS  PubMed  Google Scholar 

  17. Rinder, C.S. et al. Cardiopulmonary bypass induces leukocyte-platelet adhesion. Blood 79, 1201–1205 (1992).

    CAS  PubMed  Google Scholar 

  18. Theilmeier, G. et al. Circulating activated platelets assist THP-1 monocytoid/endothelial cell interaction under shear stress. Blood 94, 2725–2734 (1999).

    CAS  PubMed  Google Scholar 

  19. Diacovo, T.G., Puri, K.D., Warnock, R.A., Springer, T.A. & von Andrian, U.H. Platelet-mediated lymphocyte delivery to high endothelial venules. Science 273, 252–255 (1996).

    Article  CAS  Google Scholar 

  20. Henn, V. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391, 591–594 (1998).

    Article  CAS  Google Scholar 

  21. Hawrylowicz, C.M., Howells, G.L. & Feldmann, M. Platelet-derived interleukin 1 induces human endothelial adhesion molecule expression and cytokine production. J. Exp. Med. 174, 785–790 (1991).

    Article  CAS  Google Scholar 

  22. von Hundelshausen, P. et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 103, 1772–1777 (2001).

    Article  CAS  Google Scholar 

  23. Ramos, C.L. et al. Direct demonstration of P-selectin- and VCAM-1-dependent mononuclear cell rolling in early atherosclerotic lesions of apolipoprotein E-deficient mice. Circ. Res. 84, 1237–1244 (1999).

    Article  CAS  Google Scholar 

  24. Ziegler-Heitbrock, H.W.F. et al. Establishment of a human cell line (Mono Mac 6) with characteristics of mature monocytes. Int. J. Cancer 41, 456–461 (1988).

    Article  CAS  Google Scholar 

  25. Jung, S. et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    Article  CAS  Google Scholar 

  26. Frenette, P.S. et al. Platelet-endothelial interactions in inflamed mesenteric venules. Blood 91, 1318–1324 (1998).

    CAS  PubMed  Google Scholar 

  27. Andre, P.F. et al. Platelets adhere to and translocate on von Willebrand factor presented by endothelium in stimulated veins. Blood 96, 3322–3328 (2000).

    CAS  Google Scholar 

  28. Theilmeier, G.F. et al. Endothelial von Willebrand factor recruits platelets to atherosclerosis-prone sites in response to hypercholesterolemia. Blood 99, 4486–4493 (2002).

    Article  CAS  Google Scholar 

  29. Romo, G.M. et al. The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. J. Exp. Med. 190, 803–814 (1999).

    Article  CAS  Google Scholar 

  30. Massberg, S.F. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J. Exp. Med. 196, 887–896 (2002).

    Article  CAS  Google Scholar 

  31. Bombeli, T., Schwartz, B.R. & Harlan, J.M. Adhesion of activated platelets to endothelial cells—evidence for a gpIIb/IIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), αvβ3 integrin, and gpIb-α. J. Exp. Med. 187, 329–339 (1998).

    Article  CAS  Google Scholar 

  32. Rinder, H.M.F., Bonan, J.L.F., Rinder, C.S.F., Ault, K.A.F. & Smith, B.R. Activated and unactivated platelet adhesion to monocytes and neutrophils. Blood 78, 1760–1769 (1991).

    CAS  PubMed  Google Scholar 

  33. Berger, G., Hartwell, D.W. & Wagner, D.D. P-selectin and platelet clearance. Blood 92, 4446–4452 (1998).

    CAS  PubMed  Google Scholar 

  34. Newman, P.M. & Chong, B.H. Heparin-induced thrombocytopenia: new evidence for the dynamic binding of purified anti-PF4-heparin antibodies to platelets and the resultant platelet activation. Blood 96, 182–187 (2000).

    CAS  PubMed  Google Scholar 

  35. Horuk, R. et al. A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 261, 1182–1184 (1993).

    Article  CAS  Google Scholar 

  36. Neote, K., Darbonne, W., Ogez, J., Horuk, R. & Schall, T.J. Identification of a promiscuous inflammatory peptide receptor on the surface of red blood cells. J. Biol. Chem. 268, 12247–12249 (1993).

    CAS  PubMed  Google Scholar 

  37. Mannaioni, P.F., Di Bello, M.G. & Masini, E. Platelets and inflammation: role of platelet-derived growth factor, adhesion molecules and histamine. Inflamm. Res. 46, 4–18 (1997).

    Article  CAS  Google Scholar 

  38. Burger, P.C. & Wagner, D.D. Platelet P-selectin facilitates atherosclerotic lesion development. Blood (in press, 2002).

  39. Schober, A.F. et al. Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury. Circulation 106, 1523–1529 (2002).

    Article  CAS  Google Scholar 

  40. Constantin, G.F. et al. Chemokines trigger immediate β2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity 13, 759–769 (2000).

    Article  CAS  Google Scholar 

  41. Grabovsky, V. et al. Subsecond induction of α4 integrin clustering by immobilized chemokines stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule 1 under flow conditions. J. Exp. Med. 192, 495–506 (2000).

    Article  CAS  Google Scholar 

  42. Chan, J.R.F., Hyduk, S.J.F. & Cybulsky, M.I. Chemoattractants induce a rapid and transient upregulation of monocyte α4 integrin affinity for vascular cell adhesion molecule 1 which mediates arrest: an early step in the process of emigration. J. Exp. Med. 193, 1149–1158 (2001).

    Article  CAS  Google Scholar 

  43. Piccardoni, P. et al. Platelet/polymorphonuclear leukocyte adhesion: a new role for SRC kinases in Mac-1 adhesive function triggered by P-selectin. Blood 98, 108–116 (2001).

    Article  CAS  Google Scholar 

  44. Frenette, P.S., Johnson, R.C., Hynes, M.R. & Wagner, D.D. Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proc. Natl. Acad. Sci. USA 92, 7450–7454 (1995).

    Article  CAS  Google Scholar 

  45. Nunnari, J.J., Zand, T., Joris, I. & Majno, G. Quantitation of oil red O staining of the aorta in hypercholesterolemic rats. Exp. Mol. Pathol. 51, 1–8 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Kirkpatrick for mouse husbandry; A.L. Beaudet for Selp−/− mice; R.P. McEver for P-selectin mAbs; D.D. Wagner and H. Ni for advice on murine platelet isolation; and J.A. Redick for technical assistance in scanning electron microscopy and confocal microscopy. This work was supported by NIH grant HL-58108 to K.L., by DFG grant We-1913/2 to C.W. and AHA post-doctoral fellowship award 0120404U to Y.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Ley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huo, Y., Schober, A., Forlow, S. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 9, 61–67 (2003). https://doi.org/10.1038/nm810

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm810

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing