Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CDK4 coexpression with Ras generates malignant human epidermal tumorigenesis

Abstract

Ras acts with other proteins to induce neoplasia. By itself, however, strong Ras signaling can suppress proliferation of normal cells. In primary epidermal cells, we found that oncogenic Ras transiently decreases cyclin-dependent kinase (CDK) 4 expression in association with cell cycle arrest in G1 phase. CDK4 co-expression circumvents Ras growth suppression and induces invasive human neoplasia resembling squamous cell carcinoma. Tumorigenesis is dependent on CDK4 kinase function, with cyclin D1 required but not sufficient for this process. In facilitating escape from G1 growth restraints, Ras and CDK4 alter the composition of cyclin D and cyclin E complexes and promote resistance to growth inhibition by INK4 cyclin-dependent kinase inhibitors. These data identify a new role for oncogenic Ras in CDK4 regulation and highlight the functional importance of CDK4 suppression in preventing uncontrolled growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ras effects on regulators of the G1/S transition.
Figure 2: Epithelial growth inhibition by active Ras is bypassed by CDK4 co-expression.
Figure 3: Characterization of Ras-CDK4 neoplasia.
Figure 4: CDK4 kinase function, telomere studies, and proliferative cell output.
Figure 5: Model of Ras-CDK4 induction of growth and neoplasia.

Similar content being viewed by others

References

  1. Evan, G.I. & Vousden, K.H. Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001).

    CAS  Google Scholar 

  2. Ewen, M.E. Relationship between Ras pathways and cell cycle control. Prog. Cell Cycle Res. 4, 1–17 (2000).

    CAS  PubMed  Google Scholar 

  3. Adnane, J. et al. Loss of p21WAF1/CIP1 accelerates Ras oncogenesis in a transgenic/knockout mammary cancer model. Oncogene 19, 5338–5347 (2000).

    Article  CAS  Google Scholar 

  4. Peeper, D.S., Dannenberg, J.H., Douma, S., te Riele, H. & Bernards, R. Escape from premature senescence is not sufficient for oncogenic transformation by Ras. Nature Cell Biol. 3, 198–203 (2001).

    Article  CAS  Google Scholar 

  5. Elenbaas, B. et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65 (2001).

    Article  CAS  Google Scholar 

  6. Hahn, W.C. et al. Creation of human tumor cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  Google Scholar 

  7. Koontongkaew, S., Chareonkit, L., Chanvitan, A. & Amornphimoltham, P. Alterations of p53, pRb, cyclin D(1) and cdk4 in human oral and pharyngeal squamous cell carcinomas. Oral Oncol. 36, 334–339 (2000).

    Article  CAS  Google Scholar 

  8. Matsumoto, M., Furihata, M., Ishikawa, T., Ohtsuki, Y. & Ogoshi, S. Comparison of deregulated expression of cyclin D1 and cyclin E with that of cyclin-dependent kinase 4 (CDK4) and CDK2 in human oesophageal squamous cell carcinoma. Br. J. Cancer 80, 256–261 (1999).

    Article  CAS  Google Scholar 

  9. Sui, L. et al. Inverse expression of Cdk4 and p16 in epithelial ovarian tumors. Gynecol. Oncol. 79, 230–237 (2000).

    Article  CAS  Google Scholar 

  10. Miller, D.L. & Weinstock, M.A. Nonmelanoma skin cancer in the United States: incidence. J. Am. Acad. Dermatol. 30, 774–778 (1994).

    Article  CAS  Google Scholar 

  11. Pierceall, W.E., Goldberg, L.H., Tainsky, M.A., Mukhopadhyay, T. & Ananthaswamy, H.N. Ras gene mutation and amplification in human nonmelanoma skin cancers. Mol. Carcinog. 4, 196–202 (1991).

    Article  CAS  Google Scholar 

  12. Berking, C. et al. Photocarcinogenesis in human adult skin grafts. Carcinogenesis 23, 181–187 (2002).

    Article  CAS  Google Scholar 

  13. Yuspa, S.H. The pathogenesis of squamous cell cancer: lessons learned from studies of skin carcinogenesis—thirty-third G. H.A. Clowes Memorial Award Lecture. Cancer Res. 54, 1178–1189 (1994).

    CAS  PubMed  Google Scholar 

  14. Shields, J.M., Pruitt, K., McFall, A., Shaub, A. & Der, C.J. Understanding Ras: 'it ain't over 'til it's over'. Trends Cell Biol. 10, 147–154 (2000).

    CAS  PubMed  Google Scholar 

  15. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. & Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  Google Scholar 

  16. Dajee, M., Tarutani, M., Deng, H., Cai, T. & Khavari, P.A. Epidermal Ras blockade demonstrates spatially localized Ras promotion of proliferation and inhibition of differentiation. Oncogene 21, 1527–1538 (2002).

    Article  CAS  Google Scholar 

  17. Inouye, K., Mizutani, S., Koide, H. & Kaziro, Y. Formation of the Ras dimer is essential for Raf-1 activation. J. Biol. Chem. 275, 3737–3740 (2000).

    Article  CAS  Google Scholar 

  18. Choi, K.S. et al. Cdc2 and Cdk2 kinase activated by transforming growth factor-β1 trigger apoptosis through the phosphorylation of retinoblastoma protein in FaO hepatoma cells. J. Biol. Chem. 274, 31775–31783 (1999).

    Article  CAS  Google Scholar 

  19. Robbins, P.B. et al. In vivo restoration of laminin 5 β3 expression and function in junctional epidermolysis bullosa. Proc. Natl. Acad. Sci USA 98, 5193–5198 (2001).

    Article  CAS  Google Scholar 

  20. Eisma, R.J., Spiro, J.D. & Kreutzer, D.L. Vascular endothelial growth factor expression in head and neck squamous cell carcinoma. Am. J. Surg. 174, 513–517 (1997).

    Article  CAS  Google Scholar 

  21. Koseki, S. et al. An immunohistochemical study of E-cadherin expression in human squamous cell carcinoma of the skin: relationship between decreased expression of E-cadherin in the primary lesion and regional lymph node metastasis. J. Dermatol. 26, 416–422 (1999).

    Article  CAS  Google Scholar 

  22. Tsukifuji, R., Tagawa, K., Hatamochi, A. & Shinkai, H. Expression of matrix metalloproteinase-1, -2 and -3 in squamous cell carcinoma and actinic keratosis. Br. J. Cancer 80, 1087–1091 (1999).

    Article  CAS  Google Scholar 

  23. Skotzko, M., Wu, L., Anderson, W.F., Gordon, E.M. & Hall, F.L. Retroviral vector-mediated gene transfer of antisense cyclin G1 (CYCG1). Cancer Res. 55, 5493–5498 (1995).

    CAS  PubMed  Google Scholar 

  24. Robles, A.I. et al. Reduced skin tumor development in cyclin D1-deficient mice highlights the oncogenic ras pathway in vivo. Genes Dev. 12, 2469–2474 (1998).

    Article  CAS  Google Scholar 

  25. Yu, Q., Geng, Y. & Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature 411, 1017–1021. (2001).

    Article  CAS  Google Scholar 

  26. Wang, H., Goode, T., Iakova, P., Albrecht, J.H. & Timchenko, N.A. C/EBPα triggers proteasome-dependent degradation of cdk4 during growth arrest. EMBO J. 21, 930–941 (2002).

    Article  CAS  Google Scholar 

  27. Hahn, W.C. et al. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol. Cell Biol. 22, 2111–2123 (2002).

    Article  CAS  Google Scholar 

  28. Benjamin, T. & Vogt, P.K. Cell transformation by viruses. in Virology (eds Fields, B.N. & Knipe, D.M.) 317–367 (Raven Press, New York, 1990).

    Google Scholar 

  29. Proby, C.M. et al. Spontaneous keratinocyte cell lines representing early and advanced stages of malignant transformation of the epidermis. Exp. Dermatol. 9, 104–117 (2000).

    Article  CAS  Google Scholar 

  30. Wick, M., Zubov, D. & Hagen, G. Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT). Gene 232, 97–106 (1999).

    Article  CAS  Google Scholar 

  31. Cong, Y.S. & Bacchetti, S. Histone deacetylation is involved in the transcriptional repression of hTERT in normal human cells. J. Biol. Chem. 275, 35665–35668 (2000).

    Article  CAS  Google Scholar 

  32. Sherr, C.J. & Roberts, J.M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  Google Scholar 

  33. Zuber, J. et al. A genome-wide survey of RAS transformation targets. Nature Genet. 24, 144–152 (2000).

    Article  CAS  Google Scholar 

  34. Khatib, Z.A. et al. Coamplification of the CDK4 gene with MDM2 and GLI in human sarcomas. Cancer Res. 53, 5535–5541 (1993).

    CAS  PubMed  Google Scholar 

  35. Ladanyi, M. et al. MDM2 and CDK4 gene amplification in Ewing's sarcoma. J. Pathol. 175, 211–217 (1995).

    Article  CAS  Google Scholar 

  36. Wolfel, T. et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269, 1281–1284 (1995).

    Article  CAS  Google Scholar 

  37. Cheung, T.H. et al. Alteration of cyclin D1 and CDK4 gene in carcinoma of uterine cervix. Cancer Lett. 166, 199–206 (2001).

    Article  CAS  Google Scholar 

  38. von Lintig, F.C. et al. Ras activation in human breast cancer. Breast Cancer Res. Treat. 62, 51–62 (2000).

    Article  CAS  Google Scholar 

  39. Grossel, M.J., Baker, G.L. & Hinds, P.W. cdk6 can shorten G(1) phase dependent upon the N-terminal INK4 interaction domain. J. Biol. Chem. 274, 29960–29967 (1999).

    Article  CAS  Google Scholar 

  40. Kinsella, T.M. & Nolan, G.P. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene. Ther. 7, 1405–1413 (1996).

    Article  CAS  Google Scholar 

  41. Littlewood, T.D., Hancock, D.C., Parker, M.G. & Evan, G.I. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23, 1686–1690 (1995).

    Article  CAS  Google Scholar 

  42. Li, A., Simmons, P.J. & Kaur, P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc. Natl. Acad. Sci. USA 95, 3902–3907 (1998).

    Article  CAS  Google Scholar 

  43. Clark, G.J., Cox, A.D., Graham, S.M. & Der, C.J. Biological assays for Ras transformation. Methods Enzymol. 255, 395–412 (1995).

    Article  CAS  Google Scholar 

  44. Taules, M. et al. Calmodulin is essential for cyclin-dependent kinase 4 (Cdk4) activity and nuclear accumulation of cyclin D1-Cdk4 during G1. J. Biol. Chem. 273, 33279–33286 (1998).

    Article  CAS  Google Scholar 

  45. de Rooij, J. & Bos, J.L. Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 14, 623–625 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Oro, J. Crabtree, M. Scott, M. Cleary, P. Jackson, and D. Felsher for presubmission review and helpful discussions. We thank S. Yuspa, E. Fuchs, R. Weinberg, A. Dlugosz, M. Denning, and J. Bickenbach for helpful discussions. For cDNAs, we thank C. Sherr for p18INK4C, p19INK4D, p27KIP1; P. Jackson for p21CIP1; Y. Xiong for CDK6, p15INK4B, p57KIP2; S. Hanks for CDK4; J. Lipsick for cyclin D1; L. Zhu for p16INK4A; D. Hancock and M. McMahon for ERTM. We thank A. Anguiano for assistance with SKY-FISH. We also thank N. Griffiths and P. Bernstein for expert administrative support. This work was supported by the USVA Office of Research and Development and by NIH AR45192 and AR43799 (to P.A.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Khavari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazarov, M., Kubo, Y., Cai, T. et al. CDK4 coexpression with Ras generates malignant human epidermal tumorigenesis. Nat Med 8, 1105–1114 (2002). https://doi.org/10.1038/nm779

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm779

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing