Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice

A Corrigendum to this article was published on 01 November 2002

Abstract

Respiratory distress syndrome (RDS) due to insufficient production of surfactant is a common and severe complication of preterm delivery. Here, we report that loss of the hypoxia-inducible transcription factor-2α (HIF-2α) caused fatal RDS in neonatal mice due to insufficient surfactant production by alveolar type 2 cells. VEGF, a target of HIF-2α, regulates fetal lung maturation: because VEGF levels in alveolar cells were reduced in HIF-2α-deficient fetuses; mice with a deficiency of the VEGF164 and VEGF188 isoforms or of the HIF-binding site in the VEGF promotor died of RDS; intrauterine delivery of anti-VEGF-receptor-2 antibodies caused RDS and VEGF stimulated production of surfactant proteins by cultured type 2 pneumocytes. Intrauterine delivery or postnatal intratracheal instillation of VEGF stimulated conversion of glycogen to surfactant and protected preterm mice against RDS. The pneumotrophic effect of VEGF may have therapeutic potential for lung maturation in preterm infants.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Impaired lung maturation and RDS in HIF-2α−/− mice.
Figure 2: Pulmonary vascular development in HIF-2α−/− mice.
Figure 3: Pulmonary expression of HIF-2α, VEGF and its receptors.
Figure 4: VEGF treatment improves lung maturation and protects against respiratory distress.

References

  1. 1

    Goldenberg, R.L., Hauth, J.C. & Andrews, W.W. Intrauterine infection and preterm delivery. N. Engl. J. Med. 342, 1500–1507 (2000).

    CAS  Article  Google Scholar 

  2. 2

    Bhakoo, O.N., Narang, A., Karthikeyan, G. & Kumar, P. Spectrum of respiratory distress in very low birthweight neonates. Indian J. Pediatr. 67, 803–804 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Bourbon, J.R., Rieutort, M., Engle, M.J. & Farrell, P.M. Utilization of glycogen for phospholipid synthesis in fetal rat lung. Biochim. Biophys. Acta 712, 382–389 (1982).

    CAS  Article  Google Scholar 

  4. 4

    Kennedy, J.D. Lung function outcome in children of premature birth. J. Paediatr. Child Health 35, 516–521 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Jakkula, M. et al. Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L600–607 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Ferrara, N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am. J. Physiol. Cell. Physiol. 280, C1358–1366 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Healy, A.M., Morgenthau, L., Zhu, X., Farber, H.W. & Cardoso, W.V. VEGF is deposited in the subepithelial matrix at the leading edge of branching airways and stimulates neovascularization in the murine embryonic lung. Dev. Dyn. 219, 341–352 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Klekamp, J.G., Jarzecka, K. & Perkett, E.A. Exposure to hyperoxia decreases the expression of vascular endothelial growth factor and its receptors in adult rat lungs. Am. J. Pathol. 154, 823–831 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Kaner, R.J. & Crystal, R.G. Compartmentalization of vascular endothelial growth factor to the epithelial surface of the human lung. Mol. Med. 7, 240–246 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Lassus, P. et al. Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. Am. J. Respir. Crit. Care Med. 164, 1981–1987 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Bhatt, A.J. et al. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 164, 1971–1980 (2001).

    CAS  Article  Google Scholar 

  12. 12

    Lassus, P., Ristimaki, A., Ylikorkala, O., Viinikka, L. & Andersson, S. Vascular endothelial growth factor in human preterm lung. Am. J. Respir. Crit. Care Med. 159, 1429–1433 (1999).

    CAS  Article  Google Scholar 

  13. 13

    D'Angio, C. et al. Vascular endothelial growth factor in pulmonary lavage fluid from premature infants: Effects of age and postnatal dexamethasone. Biol. Neonate 76, 266–273 (1999).

    CAS  Article  Google Scholar 

  14. 14

    Brown, K.R., England, K.M., Goss, K.L., Snyder, J.M. & Acarregui, M.J. VEGF induces airway epithelial cell proliferation in human fetal lung in vitro. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L1001–1010 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Tian, H., McKnight, S.L. & Russell, D.W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11, 72–82 (1997).

    CAS  Article  Google Scholar 

  16. 16

    Ema, M. et al. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1 α regulates VEGF expression and is potentially involved in lung and vascular development. Proc. Natl. Acad. Sci. USA 94, 4273–4278 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Flamme, I. et al. HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1α and developmentally expressed in blood vessels. Mech. Dev. 63, 51–63 (1997).

    CAS  Article  Google Scholar 

  18. 18

    Brusselmans, K. et al. Hypoxia-inducible factor-2α (HIF-2α) is involved in the apoptotic response to hypoglycemia but not to hypoxia. J. Biol. Chem. 276, 39192–39196 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Botas, C. et al. Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking surfactant protein D. Proc. Natl. Acad. Sci. USA 95, 11869–11874 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Jain, S., Maltepe, E., Lu, M.M., Simon, C. & Bradfield, C.A. Expression of ARNT, ARNT2, HIF-1α, HIF-2α, and Ah receptor mRNAs in the developing mouse. Mech. Dev. 73, 117–123 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Carmeliet, P. et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nature Med. 5, 495–502 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Stalmans, I. et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J. Clin. Invest. 109, 327–336 (2002).

    CAS  Article  Google Scholar 

  23. 23

    Carmeliet, P. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nature Med. 7, 575–583 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Oosthuyse, B. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nature Genet. 28, 131–138 (2001).

    CAS  Article  Google Scholar 

  25. 25

    Rannels, S.R. Impaired surfactant synthesis in fetal type II lung cells from gsd/gsd rats. Exp. Lung Res. 22, 213–29 (1996).

    CAS  Article  Google Scholar 

  26. 26

    Rayani, H.H., Gewolb, I.H. & Floros, J. Glucose decreases steady state mRNA content of hydrophobic surfactant proteins B and C in fetal rat lung explants. Exp. Lung Res. 25, 69–79 (1999).

    CAS  Article  Google Scholar 

  27. 27

    Gilden, C., Sevanian, A., Tierney, D.F., Kaplan, S.A. & Barrett, C.T. Regulation of fetal lung phosphatidyl choline synthesis by cortisol: role of glycogen and glucose. Pediatr. Res. 11, 845–848 (1977).

    CAS  Article  Google Scholar 

  28. 28

    Ren, J.M., Gulve, E.A., Cartee, G.D. & Holloszy, J.O. Hypoxia causes glycogenolysis without an increase in percent phosphorylase a in rat skeletal muscle. Am. J. Physiol. 263, E1086–1091 (1992).

    CAS  PubMed  Google Scholar 

  29. 29

    Semenza, G.L. HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell. Biol. 13, 167–171 (2001).

    CAS  Article  Google Scholar 

  30. 30

    Yu, A.Y. et al. Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am. J. Physiol. 275, L818–826 (1998).

    CAS  Article  Google Scholar 

  31. 31

    Liang, Y. et al. Activation of vascular endothelial growth factor A transcription in tumorigenic glioblastoma cell lines by an enhancer with cell-type specific DNAse 1 accessibility. J. Biol. Chem. Mar 23 (2002) online publication: http://www.jbc.org/cgi/content/abstract/M201766200v1

  32. 32

    Bernatchez, P.N., Winstead, M.V., Dennis, E.A. & Sirois, M.G. VEGF stimulation of endothelial cell PAF synthesis is mediated by group V 14 kDa secretory phospholipase A2. Br. J. Pharmacol. 134, 197–205 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Bourbon, J.R., Hoffman, D.R. & Johnston, J.M. Effect of platelet-activating factor on glycogen metabolism in fetal rat lung. Exp. Lung Res. 17, 789–801 (1991).

    CAS  Article  Google Scholar 

  34. 34

    Rooney, S.A. Regulation of surfactant secretion. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 129, 233–243 (2001).

    CAS  Article  Google Scholar 

  35. 35

    Pugazhenthi, S. & Khandelwal, R.L. Regulation of glycogen synthase activation in isolated hepatocytes. Mol. Cell. Biochem. 149–150, 95–101 (1995).

    Article  Google Scholar 

  36. 36

    Tian, H., Hammer, R.E., Matsumoto, A.M., Russell, D.W. & McKnight, S.L. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 12, 3320–3324 (1998).

    CAS  Article  Google Scholar 

  37. 37

    Peng, J., Zhang, L., Drysdale, L. & Fong, G.H. The transcription factor EPAS-1/hypoxia-inducible factor 2α plays an important role in vascular remodeling. Proc. Natl. Acad. Sci. USA 97, 8386–8391 (2000).

    CAS  Article  Google Scholar 

  38. 38

    Ng, Y.S., Rohan, R., Sunday, M.E., Demello, D.E. & D'Amore, P.A. Differential expression of VEGF isoforms in mouse during development and in the adult. Dev. Dyn. 220, 112–121 (2001).

    CAS  Article  Google Scholar 

  39. 39

    Corne, J. et al. IL-13 stimulates vascular endothelial cell growth factor and protects against hyperoxic acute lung injury. J. Clin. Invest. 106, 783–791 (2000).

    CAS  Article  Google Scholar 

  40. 40

    Walfisch, A., Hallak, M. & Mazor, M. Multiple courses of antenatal steroids: risks and benefits. Obstet. Gynecol. 98, 491–497 (2001).

    CAS  PubMed  Google Scholar 

  41. 41

    Bhatt, A.J., Amin, S.B., Chess, P.R., Watkins, R.H. & Maniscalco, W.M. Expression of vascular endothelial growth factor and Flk-1 in developing and glucocorticoid-treated mouse lung. Pediatr. Res. 47, 606–613 (2000).

    CAS  Article  Google Scholar 

  42. 42

    Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    CAS  Article  Google Scholar 

  43. 43

    Hoet, P.H., Gilissen, L. & Nemery, B. Polyanions protect against the in vitro pulmonary toxicity of polycationic paint components associated with the Ardystil syndrome. Toxicol. Appl. Pharmacol. 175, 184–190 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank R. Verbesselt, K. Desmet, C. Van Geet and H. Devlieger for helpful discussion; and A. Bouché, M. De Mol, B. Hermans, S. Jansen, L. Kieckens, W.Y. Man, A. Manderveld, K. Maris, W. Martens, M. Nijs, S. Terclavers, A. Vandenhoeck, B. Vanwetswinkel, P. Van Wezemael and S. Wyns for technical assistance. This work was supported by an FWO-fellowship to V.C. and S.P. and by grants from the Research Fund K.U.Leuven (GOA/2001/09) and the BIOMED (#PL963380) to P.C. and D.C.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Carmeliet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Compernolle, V., Brusselmans, K., Acker, T. et al. Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 8, 702–710 (2002). https://doi.org/10.1038/nm721

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing