Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy

Abstract

Loss of cardiomyocytes through programmed cell death is a key event in the development of heart failure, but the inciting molecular mechanisms are largely unknown. We used microarray analysis to identify a genetic program for myocardial apoptosis in Gq-mediated and pressure-overload cardiac hypertrophy. A critical component of this apoptotic program was Nix/Bnip3L. Nix localized to mitochondria and caused release of cytochrome c, activation of caspase-3 and apoptotic cell death, when expressed in HEK293 fibroblasts. A previously undescribed truncated Nix isoform, termed sNix, was not targeted to mitochondria but heterodimerized with Nix and protected against Nix-mediated apoptosis. Forced in vivo myocardial expression of Nix resulted in apoptotic cardiomyopathy and rapid death. Conversely, sNix protected against apoptotic peripartum cardiomyopathy in Gαq-overexpressors. Thus, Nix/Bnip3L is upregulated in myocardial hypertrophy, and is both necessary and sufficient for Gq-mediated apoptosis of cardiomyocytes and resulting hypertrophy decompensation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and cloning of mouse Nix and sNix.
Figure 2: Confocal analysis of Nix-expressing cells.
Figure 3: Phenotypic analysis of Nix-expressing mice.
Figure 4: Cellular effects of myocardial Nix expression.
Figure 5: Expression of recombinant Nix and sNix in HEK 293 cells.
Figure 6: sNix effects on Gq-peripartum cardiomyopathy.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. MacLellan, W.R. & Schneider, M.D. Death by design. Programmed cell death in cardiovascular biology and disease. Circ. Res. 81, 137–144 (1997).

    Article  CAS  Google Scholar 

  2. Narula, J. et al. Apoptosis in myocytes in end-stage heart failure. N. Engl. J. Med. 335, 1182–1189 (1996).

    Article  CAS  Google Scholar 

  3. Olivetti, G. et al. Apoptosis in the failing human heart. N. Engl. J. Med. 336, 1131–1141 (1997).

    Article  CAS  Google Scholar 

  4. Mallat, Z. et al. Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N. Engl. J. Med. 335, 1190–1196 (1996).

    Article  CAS  Google Scholar 

  5. Adams, J.W. et al. Enhanced Gαq signaling: A common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc. Natl. Acad. Sci. USA 95, 10140–10145 (1998).

    Article  CAS  Google Scholar 

  6. Hirota, H. et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97, 189–198 (1999).

    Article  CAS  Google Scholar 

  7. Levy, D. et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N. Engl. J. Med. 322, 1561–1566 (1990).

    Article  CAS  Google Scholar 

  8. Chien, K.R. Molecular advances in cardiovascular biology. Science 260, 916–917 (1993).

    Article  CAS  Google Scholar 

  9. Williams, R.S. Apoptosis and heart failure. N. Engl. J. Med. 341, 759–760 (1999).

    Article  CAS  Google Scholar 

  10. Thornberry, N.A. & Lazebnik, Y. Caspases: Enemies within. Science 281, 1312–1316 (1998).

    Article  CAS  Google Scholar 

  11. MacLellan, W.R. & Schneider, M.D. Genetic dissection of cardiac growth control pathways. Annu. Rev. Physiol. 62, 289–319 (2000).

    Article  CAS  Google Scholar 

  12. Schneider, M.D. & Schwartz, R.J. Chips ahoy: Gene expression in failing hearts surveyed by high-density microarrays. Circulation 102, 3026–3027 (2000).

    Article  CAS  Google Scholar 

  13. D'Angelo, D.D. et al. Transgenic Gαq overexpression induces cardiac contractile failure in mice. Proc. Natl. Acad. Sci. USA 94, 8121–8126 (1997).

    Article  CAS  Google Scholar 

  14. Offermanns, S. et al. Embryonic cardiomyocyte hypoplasia and craniofacial defects in Gαq/Gα11-mutant mice. EMBO J. 17, 4304–4312 (1998).

    Article  CAS  Google Scholar 

  15. Akhter, S.A. et al. Targeting the receptor–Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 280, 574–577 (1998).

    Article  CAS  Google Scholar 

  16. Wettschureck, N. et al. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gαq/Gα11 in cardiomyocytes. Nat. Med. 7, 1236–1240 (2001).

    Article  CAS  Google Scholar 

  17. Sakata, Y. et al. Decompensation of pressure-overload hypertrophy in Gαq-overexpressing mice. Circulation 97, 1488–1495 (1998).

    Article  CAS  Google Scholar 

  18. De Windt, L.J. et al. Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: An apoptosis-independent model of dilated heart failure. Circ. Res. 86, 255–263 (2000).

    Article  CAS  Google Scholar 

  19. Aronow, B.J. et al. Divergent transcriptional responses to independent genetic causes of cardiac hypertrophy. Physiol. Genomics 6, 19–28 (2001).

    Article  CAS  Google Scholar 

  20. Chen, G. et al. Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. J. Biol. Chem. 274, 7–10 (1999).

    Article  CAS  Google Scholar 

  21. Adams, J.W. et al. Cardiomyocyte apoptosis induced by Gαq signaling is mediated by permeability transition pore formation and activation of the mitochondrial death pathway. Circ.Res. 87, 1180–1187 (2000).

    Article  CAS  Google Scholar 

  22. Shi, Y. A structural view of mitochondria-mediated apoptosis. Nat. Struct. Biol. 8, 394–401 (2001).

    Article  CAS  Google Scholar 

  23. Subramaniam, A. et al. Tissue-specific regulation of the α-myosin heavy chain gene promoter in transgenic mice. J. Biol. Chem. 266, 24613–24620 (1991).

    CAS  PubMed  Google Scholar 

  24. Chien, K.R., Knowlton, K.U., Zhu, H. & Chien, S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: Molecular studies of an adaptive physiologic response. FASEB J. 5, 3037–3046 (1991).

    Article  CAS  Google Scholar 

  25. Ray, R. et al. BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. J. Biol. Chem. 275, 1439–1448 (2000).

    Article  CAS  Google Scholar 

  26. Chen, G. et al. The E1B 19K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. J. Exp. Med. 186, 1975–1983 (1997).

    Article  CAS  Google Scholar 

  27. Mirsky, I. Left ventricular stresses in the intact human heart. Biophys. J. 9, 189–208 (1969).

    Article  CAS  Google Scholar 

  28. Katz, A.M. Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N. Engl. J. Med. 322, 100–110 (1990).

    Article  CAS  Google Scholar 

  29. Zhang, D. et al. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat. Med. 6, 556–563 (2000).

    Article  CAS  Google Scholar 

  30. Cook, S.A., Sugden, P.H. & Clerk, A. Regulation of bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: Association with changes in mitochondrial membrane potential. Circ. Res. 85, 940–949 (1999).

    Article  CAS  Google Scholar 

  31. Leri, A. et al. Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin–angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J. Clin. Invest. 101, 1326–1342 (1998).

    Article  CAS  Google Scholar 

  32. Misao, J. et al. Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 94, 1506–1512 (1996).

    Article  CAS  Google Scholar 

  33. Geisterfer-Lowrance, A.A. et al. A mouse model of familial hypertrophic cardiomyopathy. Science 272, 731–734 (1996).

    Article  CAS  Google Scholar 

  34. Fatkin, D. et al. Neonatal cardiomyopathy in mice homozygous for the Arg403Gln mutation in the α cardiac myosin heavy chain gene. J. Clin. Invest. 103, 147–153 (1999).

    Article  CAS  Google Scholar 

  35. Bruick, R.K. Expression of the gene encoding the pro-apoptotic Nip3 protein is induced by hypoxia. Proc. Natl. Acad. Sci. USA 97, 9082–9087 (2000).

    Article  CAS  Google Scholar 

  36. Yasuda, M. et al. BNIP3α: A human homolog of mitochondrial proapoptotic protein BNIP3. Cancer Res. 59, 533–537 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants HL58010 and HL59888.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald W. Dorn II.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yussman, M., Toyokawa, T., Odley, A. et al. Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med 8, 725–730 (2002). https://doi.org/10.1038/nm719

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm719

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing