Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A GRK5 polymorphism that inhibits β-adrenergic receptor signaling is protective in heart failure

Abstract

β-adrenergic receptor (βAR) blockade is a standard therapy for cardiac failure and ischemia. G protein–coupled receptor kinases (GRKs) desensitize βARs, suggesting that genetic GRK variants might modify outcomes in these syndromes. Re-sequencing of GRK2 and GRK5 revealed a nonsynonymous polymorphism of GRK5, common in African Americans, in which leucine is substituted for glutamine at position 41. GRK5-Leu41 uncoupled isoproterenol-stimulated responses more effectively than did GRK5-Gln41 in transfected cells and transgenic mice, and, like pharmacological βAR blockade, GRK5-Leu41 protected against experimental catecholamine-induced cardiomyopathy. Human association studies showed a pharmacogenomic interaction between GRK5-Leu41 and β-blocker treatment, in which the presence of the GRK5-Leu41 polymorphism was associated with decreased mortality in African Americans with heart failure or cardiac ischemia. In 375 prospectively followed African-American subjects with heart failure, GRK5-Leu41 protected against death or cardiac transplantation. Enhanced βAR desensitization of excessive catecholamine signaling by GRK5-Leu41 provides a 'genetic β-blockade' that improves survival in African Americans with heart failure, suggesting a reason for conflicting results of β-blocker clinical trials in this population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of CHO cells and mouse hearts expressing GRK5-Gln41 (Q41) and GRK5-Leu41 (L41).
Figure 2: Cardiac expression of GRK5-L41, but not GRK5-Q41, confers resistance to catecholamine-induced cardiomyopathy.
Figure 3: Prospective analysis of the interaction between GRK5 polymorphism and β-blockade as a determinant of heart failure outcome in African Americans.

Similar content being viewed by others

References

  1. Levy, D. et al. Long-term trends in the incidence of and survival with heart failure. N. Engl. J. Med. 347, 1397–1402 (2002).

    Article  PubMed  Google Scholar 

  2. Roger, V.L. et al. Trends in heart failure incidence and survival in a community-based population. J. Am. Med. Assoc. 292, 344–350 (2004).

    Article  CAS  Google Scholar 

  3. Franz, W.M., Muller, O.J. & Katus, H.A. Cardiomyopathies: from genetics to the prospect of treatment. Lancet 358, 1627–1637 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. The Merit HF Investigators. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 353, 2001–2007 (1999).

  5. The β-Blocker Evaluation of Survival Trial Investigators. A trial of the β-blocker bucindolol in patients with advanced chronic heart failure. N. Engl. J. Med. 344, 1659–1667 (2001).

  6. van Campen, L.C., Visser, F.C. & Visser, C.A. Ejection fraction improvement by β-blocker treatment in patients with heart failure: an analysis of studies published in the literature. J. Cardiovasc. Pharmacol. 32 (suppl. 1), S31–S35 (1998).

    CAS  PubMed  Google Scholar 

  7. Wagoner, L.E. et al. Polymorphisms of the β2-adrenergic receptor determine exercise capacity in patients with heart failure. Circ. Res. 86, 834–840 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Liggett, S.B. Pharmacogenetic applications of the Human Genome project. Nat. Med. 7, 281–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Kohout, T.A. & Lefkowitz, R.J. Regulation of G protein–coupled receptor kinases and arrestins during receptor desensitization. Mol. Pharmacol. 63, 9–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Koch, W.J. et al. Cardiac function in mice overexpressing the β-adrenergic receptor kinase or a β ARK inhibitor. Science 268, 1350–1353 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Koch, W.J. Genetic and phenotypic targeting of β-adrenergic signaling in heart failure. Mol. Cell. Biochem. 263, 5–9 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Matkovich, S.J. et al. Cardiac-specific ablation of G protein–receptor kinase 2 redefines its roles in heart development and β-adrenergic signaling. Circ. Res. 99, 996–1003 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Premont, R.T., Koch, W.J., Inglese, J. & Lefkowitz, R.J. Identification, purification, and characterization of GRK5, a member of the family of G protein–coupled receptor kinases. J. Biol. Chem. 269, 6832–6841 (1994).

    CAS  PubMed  Google Scholar 

  14. Gainetdinov, R.R. et al. Muscarinic supersensitivity and impaired receptor desensitization in G protein–coupled receptor kinase 5–deficient mice. Neuron 24, 1029–1036 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, E.P., Bittner, H.B., Akhter, S.A., Koch, W.J. & Davis, R.D. Myocardial function in hearts with transgenic overexpression of the G protein–coupled receptor kinase 5. Ann. Thorac. Surg. 71, 1320–1324 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Rockman, H.A. et al. Receptor-specific in vivo desensitization by the G protein–coupled receptor kinase-5 in transgenic mice. Proc. Natl. Acad. Sci. USA 93, 9954–9959 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ungerer, M., Bohm, M., Elce, J.S., Erdmann, E. & Lohse, M.J. Altered expression of β-adrenergic receptor kinase and β1-adrenergic receptors in the failing human heart. Circulation 87, 454–463 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Ungerer, M. et al. Expression of β-arrestins and β-adrenergic receptor kinases in the failing human heart. Circ. Res. 74, 206–213 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Oyama, N. et al. Angiotensin converting enzyme inhibitors attenuated the expression of G protein–coupled receptor kinases in heart failure patients. Circ. J. 70, 362–363 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Dzimiri, N., Basco, C., Moorji, A., Afrane, B. & Al Halees, Z. Characterization of lymphocyte β2-adrenoceptor signalling in patients with left ventricular volume overload disease. Clin. Exp. Pharmacol. Physiol. 29, 181–188 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Liggett, S.B. et al. Early and delayed consequences of β2-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 101, 1707–1714 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Asai, K. et al. β-adrenergic receptor blockade arrests myocyte damage and preserves cardiac function in the transgenic Gsα mouse. J. Clin. Invest. 104, 551–558 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Okumura, S. et al. Disruption of type 5 adenylyl cyclase gene preserves cardiac function against pressure overload. Proc. Natl. Acad. Sci. USA 100, 9986–9990 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bristow, M.R. β-adrenergic receptor blockade in chronic heart failure. Circulation 101, 558–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Packer, M. Current role of β-adrenergic blockers in the management of chronic heart failure. Am. J. Med. 110 (suppl. 7A), 81S–94S (2001).

    Article  PubMed  Google Scholar 

  26. Waagstein, F. et al. Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Metoprolol in Dilated Cardiomyopathy (MDC) Trial Study Group. Lancet 342, 1441–1446 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Liggett, S.B. et al. A polymorphism within a conserved β1-adrenergic receptor motif alters cardiac function and β-blocker response in human heart failure. Proc. Natl. Acad. Sci. USA 103, 11288–11293 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Small, K.M., Wagoner, L.E., Levin, A.M., Kardia, S.L. & Liggett, S.B. Synergistic polymorphisms of β1- and α2C-adrenergic receptors and the risk of congestive heart failure. N. Engl. J. Med. 347, 1135–1142 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Barnholtz-Sloan, J.S., Chakraborty, R., Sellers, T.A. & Schwartz, A.G. Examining population stratification via individual ancestry estimates versus self-reported race. Cancer Epidemiol. Biomarkers Prev. 14, 1545–1551 (2005).

    Article  PubMed  Google Scholar 

  30. Pritchard, J.K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bechhoffer, R.E., Kiefer, J. & Sobel, M. Sequential Identification and Ranking Procedures (University of Chicago Press, Chicago, 1986).

    Google Scholar 

  32. Liggett, S.B. β-adrenergic receptors in the failing heart: the good, the bad, and the unknown. J. Clin. Invest. 107, 947–948 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lloyd-Jones, D.M. et al. Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation 106, 3068–3072 (2002).

    Article  PubMed  Google Scholar 

  34. Thom, T. et al. Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113, e85–e151 (2006).

    PubMed  Google Scholar 

  35. Kim, J. et al. Functional antagonism of different G protein–coupled receptor kinases for β-arrestin–mediated angiotensin II receptor signaling. Proc. Natl. Acad. Sci. USA 102, 1442–1447 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Port, J.D. & Bristow, M.R. Altered β-adrenergic receptor gene regulation and signaling in chronic heart failure. J. Mol. Cell. Cardiol. 33, 887–905 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Cohn, J.N. et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med. 311, 819–823 (1984).

    Article  CAS  PubMed  Google Scholar 

  38. Bristow, M.R. Why does the myocardium fail? Insights from basic science. Lancet 352 (suppl. 1), SI8–SI14 (1998).

    Article  PubMed  Google Scholar 

  39. Shekelle, P.G. et al. Efficacy of angiotensin-converting enzyme inhibitors and β-blockers in the management of left ventricular systolic dysfunction according to race, gender, and diabetic status: a meta-analysis of major clinical trials. J. Am. Coll. Cardiol. 41, 1529–1538 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Liggett, S.B. et al. Altered patterns of agonist-stimulated cAMP accumulation in cells expressing mutant β2-adrenergic receptors lacking phosphorylation sites. Mol. Pharmacol. 36, 641–646 (1989).

    CAS  PubMed  Google Scholar 

  41. D'Angelo, D.D. et al. Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc. Natl. Acad. Sci. USA 94, 8121–8126 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koch, W.J., Inglese, J., Stone, W.C. & Lefkowitz, R.J. The binding site for the βγ subunits of heterotrimeric G proteins on th eβ-adrenergic receptor kinase. J. Biol. Chem. 268, 8256–60 (1993).

    CAS  PubMed  Google Scholar 

  43. Odley, A. et al. Regulation of cardiac contractility by Rab4-modulated β2-adrenergic receptor recycling. Proc. Natl. Acad. Sci. USA 101, 7082–7087 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaplan, E.L. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958).

    Article  Google Scholar 

  45. Parmar, M. & Machin, D. Survival Analysis: A Practical Approach 115–142 (Wiley, New York, 1995).

    Google Scholar 

  46. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits 51–80 (Sinauer Associates, Sunderland, Massachusetts, 1998).

    Google Scholar 

  47. Province, M.A. A single, sequential, genome-wide test to identify simultaneously all promising areas in a linkage scan. Genet. Epidemiol. 19, 301–322 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Cox, D.R. & Snell, E.J. Analysis of Binary Data 208–209 (Chapman & Hall, London, 1989).

    Google Scholar 

Download references

Acknowledgements

Supported by US National Heart, Lung, and Blood Institute Special Clinical Centers of Research in Heart Failure grants P50 HL77101 and HL77113 and by R01 HL87871.

Author information

Authors and Affiliations

Authors

Contributions

S.B.L., adenylyl cyclase studies and manuscript preparation; S.C., ischemic cohort genotyping; R.J.K., statistical analysis and manuscript preparation; F.M.S., clinical heart failure studies; S.J.M., transgenic mouse studies; H.S.H., clinical heart failure and transgenic mouse studies; A.D., clinical heart failure and transgenic mouse studies; J.S.M., rhodopsin kinase studies; L.S., heart failure cohort genotyping; R.R.P., polymorphism discovery and heart failure cohort genotyping; J.A.S., clinical ischemia studies; W.J.K., supervised studies; S.L.R.K., supervised statistical analyses; G.W.D. II, conceived and directed polymorphism discovery, heart failure genomics and transgenic mouse studies and prepared manuscript.

Corresponding author

Correspondence to Gerald W Dorn II.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Tables 1 and 2 (PDF 294 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liggett, S., Cresci, S., Kelly, R. et al. A GRK5 polymorphism that inhibits β-adrenergic receptor signaling is protective in heart failure. Nat Med 14, 510–517 (2008). https://doi.org/10.1038/nm1750

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1750

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing