Dual role of proapoptotic BAD in insulin secretion and beta cell survival


The proapoptotic BCL-2 family member BAD resides in a glucokinase-containing complex that regulates glucose-driven mitochondrial respiration. Here, we present genetic evidence of a physiologic role for BAD in glucose-stimulated insulin secretion by beta cells. This novel function of BAD is specifically dependent upon the phosphorylation of its BH3 sequence, previously defined as an essential death domain. We highlight the pharmacologic relevance of phosphorylated BAD BH3 by using cell-permeable, hydrocarbon-stapled BAD BH3 helices that target glucokinase, restore glucose-driven mitochondrial respiration and correct the insulin secretory response in Bad-deficient islets. Our studies uncover an alternative target and function for the BAD BH3 domain and emphasize the therapeutic potential of phosphorylated BAD BH3 mimetics in selectively restoring beta cell function. Furthermore, we show that BAD regulates the physiologic adaptation of beta cell mass during high-fat feeding. Our findings provide genetic proof of the bifunctional activities of BAD in both beta cell survival and insulin secretion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Impaired insulin secretion in Bad−/− mice.
Figure 2: Characterization of the insulin secretion defect in Bad−/− islets.
Figure 3: Glucose-induced changes in mitochondrial membrane potential and [Ca2+]i in Bad+/+ and Bad−/− beta cells.
Figure 4: Regulation of GSIS by the BAD BH3 domain and its phosphorylation status.
Figure 5: Metabolic activity of SAHB compounds in beta cells.
Figure 6: Sensitivity of Bad genetic models to HFD.


  1. 1

    Green, D.R. & Kroemer, G. The pathophysiology of mitochondrial cell death. Science 305, 626–629 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Danial, N.N. et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424, 952–956 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Plas, D.R. & Thompson, C.B. Cell metabolism in the regulation of programmed cell death. Trends Endocrinol. Metab. 13, 75–78 (2002).

    Article  Google Scholar 

  4. 4

    Pinton, P. & Rizzuto, R. Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ. 13, 1409–1418 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Karbowski, M., Norris, K.L., Cleland, M.M., Jeong, S.Y. & Youle, R.J. Role of Bax and Bak in mitochondrial morphogenesis. Nature 443, 658–662 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Harada, H. et al. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol. Cell 3, 413–422 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Harada, H., Andersen, J.S., Mann, M., Terada, N. & Korsmeyer, S.J. p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc. Natl. Acad. Sci. USA 98, 9666–9670 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Magnuson, M.A. & Matschinsky, F.M. Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics. 1–17, 42–64, 360–397 (Karger, Basel, Switzerland, 2004).

    Google Scholar 

  9. 9

    Bali, D. et al. Animal model for maturity-onset diabetes of the young generated by disruption of the mouse glucokinase gene. J. Biol. Chem. 270, 21464–21467 (1995).

    CAS  Article  Google Scholar 

  10. 10

    Grupe, A. et al. Transgenic knockouts reveal a critical requirement for pancreatic beta cell glucokinase in maintaining glucose homeostasis. Cell 83, 69–78 (1995).

    CAS  Article  Google Scholar 

  11. 11

    Postic, C. et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell–specific gene knock-outs using Cre recombinase. J. Biol. Chem. 274, 305–315 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Terauchi, Y. et al. Pancreatic beta cell–specific targeted disruption of glucokinase gene. Diabetes mellitus due to defective insulin secretion to glucose. J. Biol. Chem. 270, 30253–30256 (1995).

    CAS  Article  Google Scholar 

  13. 13

    Wiederkehr, A. & Wollheim, C.B. Minireview: implication of mitochondria in insulin secretion and action. Endocrinology 147, 2643–2649 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Newgard, C.B. & McGarry, J.D. Metabolic coupling factors in pancreatic beta cell signal transduction. Annu. Rev. Biochem. 64, 689–719 (1995).

    CAS  Article  Google Scholar 

  15. 15

    Berggren, P.O. & Larsson, O. Ca2+ and pancreatic B-cell function. Biochem. Soc. Trans. 22, 12–18 (1994).

    CAS  Article  Google Scholar 

  16. 16

    Gao, Z. et al. Distinguishing features of leucine and α-ketoisocaproate sensing in pancreatic beta cells. Endocrinology 144, 1949–1957 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Proks, P., Reimann, F., Green, N., Gribble, F. & Ashcroft, F. Sulfonylurea stimulation of insulin secretion. Diabetes 51 Suppl 3, S368–S376 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Arden, C., Baltrusch, S. & Agius, L. Glucokinase regulatory protein is associated with mitochondria in hepatocytes. FEBS Lett. 580, 2065–2070 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Antinozzi, P.A., Ishihara, H., Newgard, C.B. & Wollheim, C.B. Mitochondrial metabolism sets the maximal limit of fuel-stimulated insulin secretion in a model pancreatic beta cell: a survey of four fuel secretagogues. J. Biol. Chem. 277, 11746–11755 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Liang, Y. et al. Glucose metabolism and insulin release in mouse beta HC9 cells, as model for wild-type pancreatic beta cells. Am. J. Physiol. 270, E846–E857 (1996).

    CAS  PubMed  Google Scholar 

  21. 21

    Heart, E., Corkey, R.F., Wikstrom, J.D., Shirihai, O.S. & Corkey, B.E. Glucose-dependent increase in mitochondrial membrane potential, but not cytoplasmic calcium, correlates with insulin secretion in single islet cells. Am. J. Physiol. Endocrinol. Metab. 290, E143–E148 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Zha, J. et al. BH3 domain of BAD is required for heterodimerization with BCL-XL and pro-apoptotic activity. J. Biol. Chem. 272, 24101–24104 (1997).

    CAS  Article  Google Scholar 

  23. 23

    Datta, S.R. et al. Survival factor–mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev. Cell 3, 631–643 (2002).

    CAS  Article  Google Scholar 

  24. 24

    Zha, J., Harada, H., Yang, E., Jockel, J. & Korsmeyer, S.J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14–3-3 not BCL-XL . Cell 87, 619–628 (1996).

    CAS  Article  Google Scholar 

  25. 25

    Walensky, L.D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Walensky, L.D. et al. A stapled BID BH3 helix directly binds and activates BAX. Mol. Cell 24, 199–210 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Datta, S.R. et al. 14–3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol. Cell 6, 41–51 (2000).

    CAS  Article  Google Scholar 

  28. 28

    Burch, P.T. et al. Adaptation of glycolytic enzymes: glucose use and insulin release in rat pancreatic islets during fasting and refeeding. Diabetes 30, 923–928 (1981).

    CAS  Article  Google Scholar 

  29. 29

    Saghatelian, A., Jessani, N., Joseph, A., Humphrey, M. & Cravatt, B.F. Activity-based probes for the proteomic profiling of metalloproteases. Proc. Natl. Acad. Sci. USA 101, 10000–10005 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Accili, D., Kido, Y., Nakae, J., Lauro, D. & Park, B.C. Genetics of type 2 diabetes: insight from targeted mouse mutants. Curr. Mol. Med. 1, 9–23 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Bell, G.I. & Polonsky, K.S. Diabetes mellitus and genetically programmed defects in beta cell function. Nature 414, 788–791 (2001).

    CAS  Article  Google Scholar 

  32. 32

    Dickson, L.M. & Rhodes, C.J. Pancreatic beta cell growth and survival in the onset of type 2 diabetes: a role for protein kinase B in the Akt? Am. J. Physiol. Endocrinol. Metab. 287, E192–E198 (2004).

    CAS  Article  Google Scholar 

  33. 33

    Weir, G.C., Laybutt, D.R., Kaneto, H., Bonner-Weir, S. & Sharma, A. Beta cell adaptation and decompensation during the progression of diabetes. Diabetes 50 Suppl 1, S154–S159 (2001).

    CAS  Article  Google Scholar 

  34. 34

    Prentki, M., Joly, E., El-Assaad, W. & Roduit, R. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta cell adaptation and failure in the etiology of diabetes. Diabetes 51 Suppl 3, S405–S413 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Jetton, T.L. et al. Mechanisms of compensatory beta cell growth in insulin-resistant rats: roles of Akt kinase. Diabetes 54, 2294–2304 (2005).

    CAS  Article  Google Scholar 

  36. 36

    Zhou, Y.P. et al. Overexpression of Bcl-XL in beta cells prevents cell death but impairs mitochondrial signal for insulin secretion. Am. J. Physiol. Endocrinol. Metab. 278, E340–E351 (2000).

    CAS  Article  Google Scholar 

  37. 37

    Patrucco, E. et al. PI3K-γ modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 118, 375–387 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Hara, M.R. & Snyder, S.H. Nitric oxide-GAPDH-Siah: a novel cell death cascade. Cell. Mol. Neurobiol. 26, 525–536 (2006).

    Article  Google Scholar 

  39. 39

    Tan, Y., Demeter, M.R., Ruan, H. & Comb, M.J. BAD Ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival. J. Biol. Chem. 275, 25865–25869 (2000).

    CAS  Article  Google Scholar 

  40. 40

    Baggio, L.L. & Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131–2157 (2007).

    CAS  Article  Google Scholar 

  41. 41

    Jhala, U.S. et al. cAMP promotes pancreatic beta cell survival via CREB-mediated induction of IRS2. Genes Dev. 17, 1575–1580 (2003).

    CAS  Article  Google Scholar 

  42. 42

    Pende, M. et al. Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 408, 994–997 (2000).

    CAS  Article  Google Scholar 

  43. 43

    Tuttle, R.L. et al. Regulation of pancreatic beta cell growth and survival by the serine/threonine protein kinase Akt1/PKBα. Nat. Med. 7, 1133–1137 (2001).

    CAS  Article  Google Scholar 

  44. 44

    Ranger, A.M. et al. Bad-deficient mice develop diffuse large B cell lymphoma. Proc. Natl. Acad. Sci. USA 100, 9324–9329 (2003).

    Article  Google Scholar 

  45. 45

    Winzell, M.S. & Ahren, B. The high-fat diet–fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53 Suppl 3, S215–S219 (2004).

    Article  Google Scholar 

  46. 46

    Larsson, O., Deeney, J.T., Branstrom, R., Berggren, P.O. & Corkey, B.E. Activation of the ATP-sensitive K+ channel by long chain acyl-CoA. A role in modulation of pancreatic beta cell glucose sensitivity. J. Biol. Chem. 271, 10623–10626 (1996).

    CAS  Article  Google Scholar 

  47. 47

    Schultz, V., Sussman, I., Bokvist, K. & Tornheim, K. Bioluminometric assay of ADP and ATP at high ATP/ADP ratios: assay of ADP after enzymatic removal of ATP. Anal. Biochem. 215, 302–304 (1993).

    CAS  Article  Google Scholar 

  48. 48

    Trus, M.D. et al. Regulation of glucose metabolism in pancreatic islets. Diabetes 30, 911–922 (1981).

    CAS  Article  Google Scholar 

  49. 49

    He, T.C. et al. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514 (1998).

    CAS  Article  Google Scholar 

  50. 50

    Zhou, Y.P. et al. Overexpression of repressive cAMP response element modulators in high glucose and fatty acid-treated rat islets. A common mechanism for glucose toxicity and lipotoxicity? J. Biol. Chem. 278, 51316–51323 (2003).

    CAS  Article  Google Scholar 

Download references


We thank M. Godes and C. Gramm for technical assistance, R. Pasquier and B. Szlyk for islet isolation and animal husbandry, G. Weir (Joslin Diabetes Center, Boston, MA) for antibody to glucokinase, B. Spiegelman, B. Malynn, M. Vander Heiden, A. Schinzel, J. Labelle, G. Verdine, F. Bernal, A. Saghatelian, A.-M. Richards and G. Yaney for helpful discussion and E. Smith for manuscript preparation. N.N.D. and L.D.W. are recipients of the Burroughs Wellcome Fund Career Award in Biomedical Sciences. This work was supported by US National Institute of Health grants K01CA10659 (N.N.D.), 5R01CA50239 and 5R01DK68781 (S.J.K.), 5K08HL074049 (L.D.W.) and by Charles E. Culpeper Scholarship in Medical Science (L.D.W.).

Author information




N.N.D. planned and performed the in vivo and in vitro experiments, supervised the project and wrote the manuscript. J.K.F. and K.R. assisted with conducting experiments. L.D.W., K.L.P., G.H.B. and J.M. designed and synthesized the SAHB compounds and characterized their chemical and biophysical properties. C.-Y.Z. made conceptual contributions and helped with data interpretation. C.S.C. performed the hyperglycemic clamp studies with help from A.K., S.N., S.K. and supervision from G.I.S. A.J.A.M. and J.D.W. performed the measurements of mitochondrial membrane potential with supervision from O.S.S. S.R.D. generated the BadS155A knock-in model with supervision from M.E.G. J.T.D. helped with islet perifusion studies. B.E.C. provided critical guidance and expertise. B.B.L. provided advice. The late S.J.K. provided the mentorship and laboratory resources that catalyzed the initial studies.

Corresponding author

Correspondence to Nika N Danial.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–4, Supplementary Table 1 and Supplementary Methods (PDF 645 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Danial, N., Walensky, L., Zhang, CY. et al. Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat Med 14, 144–153 (2008). https://doi.org/10.1038/nm1717

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing