Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

T cell–encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection

An Author Correction to this article was published on 28 February 2024

This article has been updated

Abstract

To reject tumors, T cells must overcome poor tumor immunogenicity and an adverse tumor microenvironment. Providing agonistic costimulatory signals to tumor-infiltrating T cells to augment T cell function remains a challenge for the implementation of safe and effective immunotherapy. We hypothesized that T cells overexpressing selected costimulatory ligands could serve as cellular vehicles mediating powerful, yet constrained, anatomically targeted costimulation. Here, we show that primary human T cells expressing CD80 and 4-1BB ligand (4-1BBL) vigorously respond to tumor cells lacking costimulatory ligands and provoke potent rejection of large, systemic tumors in immunodeficient mice. In addition to showing costimulation of bystander T cells (transcostimulation), we show the effect of CD80 and 4-1BBL binding to their respective receptors in the immunological synapse of isolated single cells (autocostimulation). This new strategy of endowing T cells with constitutively expressed costimulatory ligands could be extended to other ligand-receptor pairs and used to enhance any targeted adoptive transfer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Constitutive coexpression of CD80 and 4-1BBL in human T lymphocytes elicits robust proliferative responses after cyclic stimulations through their endogenous T cell receptor or through a chimeric antigen receptor.
Figure 2: Eradication of established PC3-PSMA tumors in SCID-Beige mice after treatment with Pz1+ T cells coexpressing CD80 and 4-1BBL.
Figure 3: Robust, tumor antigen–dependent, in vivo accumulation of CD80+4-1BBL+ T lymphocytes.
Figure 4: CD80 and 4-1BBL and their receptors, CD28 and 4-1BB, colocalize at the immunological synapse to costimulate T cells in cis.
Figure 5: CD80- and 4-1BBL–expressing T lymphocytes transcostimulate unmodified, antigen-specific bystander T cells through physical contact.
Figure 6: The accumulation of adoptively transferred, PSMA-redirected T lymphocytes at tumor sites is augmented by Pz1+CD80+4-1BBL+, but not 19z1+CD80+4-1BBL+, T cells.

Similar content being viewed by others

Change history

References

  1. Drake, C.G., Jaffee, E. & Pardoll, D.M. Mechanisms of immune evasion by tumors. Adv. Immunol.90, 51–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, L. Co-inhibitory molecules of the B7–CD28 family in the control of T-cell immunity. Nat. Rev. Immunol.4, 336–347 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Zou, W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol.6, 295–307 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Watts, T.H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol.23, 23–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Riley, J.L. & June, C.H. The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood105, 13–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Uno, T. et al. Eradication of established tumors in mice by a combination antibody-based therapy. Nat. Med.12, 693–698 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Daugherty, A.L. & Mrsny, R.J. Formulation and delivery issues for monoclonal antibody therapeutics. Adv. Drug Deliv. Rev.58, 686–706 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Rabu, C. et al. Production of recombinant human trimeric CD137L (4-1BBL). Cross-linking is essential to its T cell co-stimulation activity. J. Biol. Chem.280, 41472–41481 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Copier, J. & Dalgleish, A. Overview of tumor cell-based vaccines. Int. Rev. Immunol.25, 297–319 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Townsend, S.E. & Allison, J.P. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science259, 368–370 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Melero, I. et al. Amplification of tumor immunity by gene transfer of the co-stimulatory 4-1BB ligand: synergy with the CD28 co-stimulatory pathway. Eur. J. Immunol.28, 1116–1121 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Guinn, B.A., DeBenedette, M.A., Watts, T.H. & Berinstein, N.L. 4-1BBL cooperates with B7-1 and B7-2 in converting a B cell lymphoma cell line into a long-lasting antitumor vaccine. J. Immunol.162, 5003–5010 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Yu, P. et al. Priming of naive T cells inside tumors leads to eradication of established tumors. Nat. Immunol.5, 141–149 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Andarini, S. et al. Adenovirus vector-mediated in vivo gene transfer of OX40 ligand to tumor cells enhances antitumor immunity of tumor-bearing hosts. Cancer Res.64, 3281–3287 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med.355, 1018–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Blansfield, J.A. et al. Cytotoxic T-lymphocyte-associated antigen-4 blockage can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer. J. Immunother.28, 593–598 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arlen, P.M. et al. A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin. Cancer Res.12, 1260–1269 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Milowsky, M.I. et al. Vascular targeted therapy with anti–prostate-specific membrane antigen monoclonal antibody J591 in advanced solid tumors. J. Clin. Oncol.25, 540–547 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Peggs, K.S. et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet362, 1375–1377 (2003).

    Article  PubMed  Google Scholar 

  20. Micklethwaite, K. et al. Ex vivo expansion and prophylactic infusion of CMV-pp65 peptide–specific cytotoxic T-lymphocytes following allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant.13, 707–714 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Leen, A.M., Rooney, C.M. & Foster, A.E. Improving T cell therapy for cancer. Annu. Rev. Immunol.25, 243–265 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Kershaw, M.H., Teng, M.W., Smyth, M.J. & Darcy, P.K. Supernatural T cells: genetic modification of T cells for cancer therapy. Nat. Rev. Immunol.5, 928–940 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Papanicolaou, G.A. et al. Rapid expansion of cytomegalovirus-specific cytotoxic T lymphocytes by artificial antigen-presenting cells expressing a single HLA allele. Blood102, 2498–2505 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Gong, M.C. et al. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia1, 123–127 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sadelain, M., Riviere, I. & Brentjens, R. Targeting tumours with genetically enhanced T lymphocytes. Nat. Rev. Cancer3, 35–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Lamers, C.H. et al. Gene-modified T cells for adoptive immunotherapy of renal cell cancer maintain transgene-specific immune functions in vivo. Cancer Immunol. Immunother.56, 1875–1883 (2007).

    Article  PubMed  Google Scholar 

  27. Brentjens, R.J. et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med.9, 279–286 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Gade, T.P. et al. Targeted elimination of prostate cancer by genetically directed human T lymphocytes. Cancer Res.65, 9080–9088 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Bromley, S.K. et al. The immunological synapse and CD28–CD80 interactions. Nat. Immunol.2, 1159–1166 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Pentcheva-Hoang, T., Egen, J.G., Wojnoonski, K. & Allison, J.P. B7–1 and B7–2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity21, 401–413 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Nam, K.O. et al. Cross-linking of 4-1BB activates TCR-signaling pathways in CD8· T lymphocytes. J. Immunol.174, 1898–1905 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Radoja, S. et al. CD8+ tumor-infiltrating T cells are deficient in perforin-mediated cytolytic activity due to defective microtubule-organizing center mobilization and lytic granule exocytosis. J. Immunol.167, 5042–5051 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Somersalo, K. et al. Cytotoxic T lymphocytes form an antigen-independent ring junction. J. Clin. Invest.113, 49–57 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jang, I.K., Lee, Z.H., Kim, Y.J., Kim, S.H. & Kwon, B.S. Human 4-1BB (CD137) signals are mediated by TRAF2 and activate nuclear factor-κB. Biochem. Biophys. Res. Commun.242, 613–620 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Ding, L. & Shevach, E.M. Activation of CD4· T cells by delivery of the B7 costimulatory signal on bystander antigen-presenting cells (trans-costimulation). Eur. J. Immunol.24, 859–866 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Smythe, J.A. et al. Human fibroblasts transduced with CD80 or CD86 efficiently trans-costimulate CD4· and CD8· T lymphocytes in HLA-restricted reactions: implications for immune augmentation cancer therapy and autoimmunity. J. Immunol.163, 3239–3249 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Maus, M.V. et al. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat. Biotechnol.20, 143–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Holdorf, A.D., Lee, K.H., Burack, W.R., Allen, P.M. & Shaw, A.S. Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nat. Immunol.3, 259–264 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Tseng, S.Y., Liu, M. & Dustin, M.L. CD80 cytoplasmic domain controls localization of CD28, CTLA-4, and protein kinase Cθ in the immunological synapse. J. Immunol.175, 7829–7836 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Keller, A.M. et al. Costimulatory ligand CD70 is delivered to the immunological synapse by shared intracellular trafficking with MHC class II molecules. Proc. Natl. Acad. Sci. USA104, 5989–5994 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dustin, M.L. Impact of the immunological synapse on T cell signaling. Results Probl. Cell Differ.43, 175–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Stinchcombe, J.C., Majorovits, E., Bossi, G., Fuller, S. & Griffiths, G.M. Centrosome polarization delivers secretory granules to the immunological synapse. Nature443, 462–465 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Thompson, C.B. & Allison, J.P. The emerging role of CTLA-4 as an immune attenuator. Immunity7, 445–450 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Butte, M.J., Keir, M.E., Phamduy, T.B., Sharpe, A.H. & Freeman, G.J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity27, 111–122 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Finger, E.B. & Bluestone, J.A. When ligand becomes receptor—tolerance via B7 signaling on DCs. Nat. Immunol.3, 1056–1057 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Sanchez-Lockhart, M. & Miller, J. Engagement of CD28 outside of the immunological synapse results in up-regulation of IL-2 mRNA stability but not IL-2 transcription. J. Immunol.176, 4778–4784 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer5, 263–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Gallardo, H.F., Tan, C. & Sadelain, M. The internal ribosomal entry site of the encephalomyocarditis virus enables reliable coexpression of two transgenes in human primary T lymphocytes. Gene Ther.4, 1115–1119 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Latouche, J.B. & Sadelain, M. Induction of human cytotoxic T lymphocytes by artificial antigen-presenting cells. Nat. Biotechnol.18, 405–409 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Szymczak, A.L. et al. Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide–based retroviral vector. Nat. Biotechnol.22, 589–594 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Koutcher and C. Le for magnetic resonance imaging scans provided by the MSKCC Small Animal Imaging Core Facility, supported in part by the National Institutes of Health (NIH) Small Animal Imaging Research Program Grant No. R24 CA83084 and the NIH Center Grant No. P30CA08748. We thank K. Manova for consulting and technical assistance for the confocal studies, J. Hendrikx for MoFlo cell sorts and K. LaPerle for the necropsies. Anti-idiotypic antibodies specific for Pz1 and 19z1 were kindly provided by I. Rivière (MSKCC). We thank R. O'Reilly (MSKCC) for Caco-2 tumor cells retrovirally transduced to express CMV pp65 and M. Olszewska (MSKCC) for the SFG-CBR-luc-eGFP fusion plasmid. We also thank S. Samakoglu (MSKCC) for the pSLII80-hU6 plasmid as well as for the shRNA for β-globin. This work was supported by NIH grant CA59350, W.H. Goodwin and A. Goodwin and the Commonwealth Cancer Foundation for Research, the Experimental Therapeutics Center of MSKCC, and Golfers against Cancer. M.T.S. is a recipient of the Cancer Research Institute predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Sadelain.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–9 (PDF 2421 kb)

Supplementary Movie

The 3D-overlay projection shows a two-cell cluster from our confocal studies (Fig. 4a). A human CD8+dsRed-4-1BBL+Pz1+ T cell labelled with FITC-CTB engages a PSMA+ LNCaP tumor cell (Red = dsRed-4-1BBL, Magenta = 4-1BB-Cy5, Green = FITC-CTB). The exact protocol is detailed in Methods.The rotating 3D-projection has been obtained by converting a confocal z-stack (20 μm at 1 μm) using Velocity software (Improvision). (MOV 572 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephan, M., Ponomarev, V., Brentjens, R. et al. T cell–encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nat Med 13, 1440–1449 (2007). https://doi.org/10.1038/nm1676

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1676

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing