Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis

Abstract

Data providing direct evidence for a causative link between endothelial dysfunction, microvascular disease and diabetic end-organ damage are scarce. Here we show that activated protein C (APC) formation, which is regulated by endothelial thrombomodulin, is reduced in diabetic mice and causally linked to nephropathy. Thrombomodulin-dependent APC formation mediates cytoprotection in diabetic nephropathy by inhibiting glomerular apoptosis. APC prevents glucose-induced apoptosis in endothelial cells and podocytes, the cellular components of the glomerular filtration barrier. APC modulates the mitochondrial apoptosis pathway via the protease-activated receptor PAR-1 and the endothelial protein C receptor EPCR in glucose-stressed cells. These experiments establish a new pathway, in which hyperglycemia impairs endothelial thrombomodulin-dependent APC formation. Loss of thrombomodulin-dependent APC formation interrupts cross-talk between the vascular compartment and podocytes, causing glomerular apoptosis and diabetic nephropathy. Conversely, maintaining high APC levels during long-term diabetes protects against diabetic nephropathy.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Hyperglycemia suppresses thrombomodulin (TM) expression and protein C activation in vivo.
Figure 2: Diabetic nephropathy is differentially modulated in mice with impaired or enhanced APC formation.
Figure 3: APC modulates glomerular apoptosis in diabetic nephropathy.
Figure 4: APC-dependent inhibition of apoptosis prevents nephropathy in diabetic ThbdPro/Pro mice.
Figure 5: APC prevents hyperglycemia-induced apoptosis in endothelial cells and podocytes, but not mesangial cells, in vitro.
Figure 6: APC inhibits mitochondrial-dependent apoptosis in high glucose–stressed endothelial cells through PAR-1 and EPCR.

References

  1. Renal Data System: USRDS 1998 Annual Data Report (NIH Publ. No. 98–3176) (US Government Printing Office, Washington, DC, 1998).

  2. Wendt, T.M. et al. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am. J. Pathol. 162, 1123–1137 (2003).

    Article  CAS  Google Scholar 

  3. Haraldsson, B. & Sorensson, J. Why do we not all have proteinuria? An update of our current understanding of the glomerular barrier. News Physiol. Sci. 19, 7–10 (2004).

    PubMed  Google Scholar 

  4. Dalla Vestra, M. et al. Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. Diabetes 52, 1031–1035 (2003).

    Article  CAS  Google Scholar 

  5. Meyer, T.W., Bennett, P.H. & Nelson, R.G. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia 42, 1341–1344 (1999).

    Article  CAS  Google Scholar 

  6. Esmon, C.T. Inflammation and the activated protein C anticoagulant pathway. Semin. Thromb. Hemost. 32 (Suppl. 1), 49–60 (2006).

    Article  CAS  Google Scholar 

  7. Riewald, M., Petrovan, R.J., Donner, A., Mueller, B.M. & Ruf, W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 296, 1880–1882 (2002).

    Article  CAS  Google Scholar 

  8. Cheng, T. et al. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat. Med. 9, 338–342 (2003).

    Article  CAS  Google Scholar 

  9. Feistritzer, C. & Riewald, M. Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 105, 3178–3184 (2005).

    Article  CAS  Google Scholar 

  10. Finigan, J.H. et al. Activated protein C mediates novel lung endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation. J. Biol. Chem. 280, 17286–17293 (2005).

    Article  CAS  Google Scholar 

  11. Borcea, V. et al. Influence of ramipril on the course of plasma thrombomodulin in patients with diabetes mellitus. Vasa 28, 172–180 (1999).

    Article  CAS  Google Scholar 

  12. Fujiwara, Y., Tagami, S. & Kawakami, Y. Circulating thrombomodulin and hematological alterations in type 2 diabetic patients with retinopathy. J. Atheroscler. Thromb. 5, 21–28 (1998).

    Article  CAS  Google Scholar 

  13. Weiler-Guettler, H. et al. A targeted point mutation in thrombomodulin generates viable mice with a prethrombotic state. J. Clin. Invest. 101, 1983–1991 (1998).

    Article  CAS  Google Scholar 

  14. Hall, S.W., Nagashima, M., Zhao, L., Morser, J. & Leung, L.L. Thrombin interacts with thrombomodulin, protein C, and thrombin-activatable fibrinolysis inhibitor via specific and distinct domains. J. Biol. Chem. 274, 25510–25516 (1999).

    Article  CAS  Google Scholar 

  15. Festa, A. et al. Inflammation and microalbuminuria in nondiabetic and type 2 diabetic subjects: The Insulin Resistance Atherosclerosis Study. Kidney Int. 58, 1703–1710 (2000).

    Article  CAS  Google Scholar 

  16. Isermann, B. et al. The thrombomodulin–protein C system is essential for the maintenance of pregnancy. Nat. Med. 9, 331–337 (2003).

    Article  CAS  Google Scholar 

  17. Mosnier, L.O. & Griffin, J.H. Inhibition of staurosporine-induced apoptosis of endothelial cells by activated protein C requires protease-activated receptor-1 and endothelial cell protein C receptor. Biochem. J. 373, 65–70 (2003).

    Article  CAS  Google Scholar 

  18. Tewari, M. et al. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81, 801–809 (1995).

    Article  CAS  Google Scholar 

  19. Wang, J. et al. Minocycline up-regulates Bcl-2 and protects against cell death in mitochondria. J. Biol. Chem. 279, 19948–19954 (2004).

    Article  CAS  Google Scholar 

  20. Kelly, K.J. et al. Minocycline inhibits apoptosis and inflammation in a rat model of ischemic renal injury. Am. J. Physiol. Renal Physiol. 287, F760–F766 (2004).

    Article  CAS  Google Scholar 

  21. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001).

    Article  CAS  Google Scholar 

  22. Zou, M.H., Shi, C. & Cohen, R.A. High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H(2) receptor-mediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells. Diabetes 51, 198–203 (2002).

    Article  CAS  Google Scholar 

  23. Yamaji, K. et al. Activated protein C, a natural anticoagulant protein, has antioxidant properties and inhibits lipid peroxidation and advanced glycation end products formation. Thromb. Res. 115, 319–325 (2005).

    Article  CAS  Google Scholar 

  24. Riewald, M. & Ruf, W. Protease-activated receptor-1 signaling by activated protein C in cytokine-perturbed endothelial cells is distinct from thrombin signaling. J. Biol. Chem. 280, 19808–19814 (2005).

    Article  CAS  Google Scholar 

  25. Goligorsky, M.S., Chen, J. & Brodsky, S. Workshop: endothelial cell dysfunction leading to diabetic nephropathy: focus on nitric oxide. Hypertension 37, 744–748 (2001).

    Article  CAS  Google Scholar 

  26. Endemann, D.H. & Schiffrin, E.L. Endothelial dysfunction. J. Am. Soc. Nephrol. 15, 1983–1992 (2004).

    Article  CAS  Google Scholar 

  27. Murata, I. et al. Apoptotic cell loss following cell proliferation in renal glomeruli of Otsuka Long-Evans Tokushima Fatty rats, a model of human type 2 diabetes. Am. J. Nephrol. 22, 587–595 (2002).

    Article  Google Scholar 

  28. Kumar, D., Robertson, S. & Burns, K.D. Evidence of apoptosis in human diabetic kidney. Mol. Cell. Biochem. 259, 67–70 (2004).

    Article  CAS  Google Scholar 

  29. Baba, K. et al. Involvement of apoptosis in patients with diabetic nephropathy: A study on plasma soluble Fas levels and pathological findings. Nephrology (Carlton) 9, 94–99 (2004).

    Article  Google Scholar 

  30. Liaw, P.C. et al. Patients with severe sepsis vary markedly in their ability to generate activated protein C. Blood 104, 3958–3964 (2004).

    Article  CAS  Google Scholar 

  31. Macias, W.L. et al. New insights into the protein C pathway: potential implications for the biological activities of drotrecogin alfa (activated). Crit. Care 9 Suppl 4, S38–S45 (2005).

    Article  Google Scholar 

  32. Glaser, C.B. et al. Oxidation of a specific methionine in thrombomodulin by activated neutrophil products blocks cofactor activity. A potential rapid mechanism for modulation of coagulation. J. Clin. Invest. 90, 2565–2573 (1992).

    Article  CAS  Google Scholar 

  33. Boehme, M.W. et al. Release of thrombomodulin from endothelial cells by concerted action of TNF-alpha and neutrophils: in vivo and in vitro studies. Immunology 87, 134–140 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mosnier, L.O., Gale, A.J., Yegneswaran, S. & Griffin, J.H. Activated protein C variants with normal cytoprotective but reduced anticoagulant activity. Blood 104, 1740–1744 (2004).

    Article  CAS  Google Scholar 

  35. Bernard, G.R. et al. Safety assessment of drotrecogin alfa (activated) in the treatment of adult patients with severe sepsis. Crit. Care 7, 155–163 (2003).

    Article  Google Scholar 

  36. Taylor, F.B. & Kinasewitz, G. Activated protein C in sepsis. J. Thromb. Haemost. 2, 708–717 (2004).

    Article  CAS  Google Scholar 

  37. Chae, S.S., Proia, R.L. & Hla, T. Constitutive expression of the S1P1 receptor in adult tissues. Prostaglandins Other Lipid Mediat. 73, 141–150 (2004).

    Article  CAS  Google Scholar 

  38. Virag, L. & Szabo, C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54, 375–429 (2002).

    Article  CAS  Google Scholar 

  39. Cipriani, G. et al. Nuclear poly(ADP-ribose) polymerase-1 rapidly triggers mitochondrial dysfunction. J. Biol. Chem. 280, 17227–17234 (2005).

    Article  CAS  Google Scholar 

  40. Alano, C.C., Kauppinen, T.M., Valls, A.V. & Swanson, R.A. Minocycline inhibits poly(ADP-ribose) polymerase-1 at nanomolar concentrations. Proc. Natl. Acad. Sci. USA 103, 9685–9690 (2006).

    Article  CAS  Google Scholar 

  41. Szabo, C., Biser, A., Benko, R., Bottinger, E. & Susztak, K. Poly(ADP-ribose) polymerase inhibitors ameliorate nephropathy of type 2 diabetic Leprdb/db mice. Diabetes 55, 3004–3012 (2006).

    Article  CAS  Google Scholar 

  42. Kiss, L. et al. The pathogenesis of diabetic complications: the role of DNA injury and poly(ADP-ribose) polymerase activation in peroxynitrite-mediated cytotoxicity. Mem. Inst. Oswaldo Cruz 100 (Suppl. 1), 29–37 (2005).

    Article  CAS  Google Scholar 

  43. Richardson, M.A., Gerlitz, B. & Grinnell, B.W. Enhancing protein C interaction with thrombin results in a clot-activated anticoagulant. Nature 360, 261–264 (1992).

    Article  CAS  Google Scholar 

  44. Chen, M. et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med. 6, 797–801 (2000).

    Article  CAS  Google Scholar 

  45. Isermann, B. et al. Endothelium-specific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis. J. Clin. Invest. 108, 537–546 (2001).

    Article  CAS  Google Scholar 

  46. Kerlin, B.A. et al. Survival advantage associated with heterozygous Factor V Leiden mutation in patients with severe sepsis and in mouse endotoxemia. Blood 102, 3085–3092 (2003).

    Article  CAS  Google Scholar 

  47. Calkin, A.C. et al. PPAR-α and -γ agonists attenuate diabetic kidney disease in the apolipoprotein E knockout mouse. Nephrol. Dial. Transplant. 21, 2399–2405 (2006).

    Article  CAS  Google Scholar 

  48. Mundel, P. et al. Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp. Cell Res. 236, 248–258 (1997).

    Article  CAS  Google Scholar 

  49. Asanuma, K. et al. Synaptopodin regulates the actin-bundling activity of alpha-actinin in an isoform-specific manner. J. Clin. Invest. 115, 1188–1198 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Huntscha and C. Luckner for technical support. This work was supported by grants from the Deutsche Forschungsgemeinschaft (IS 67/2-1; IS 67/2-2) to B.I., a grant from the Novartis Stiftung to B.I. and T.C., a grant from the Lautenschläger Stiftung, and a European Association for the Study of Diabetes grant to A.B.

Author information

Authors and Affiliations

Authors

Contributions

B.I. conceptually designed, conducted and interpreted the experimental work and wrote the manuscript; I.A.V. did in vivo and ex vivo work; T.M. did ex vivo and in vitro work, S.H. did in vitro work; M.K. and J.B. did ex vivo work; M.A.F.C. did transgenic mouse work; M.Z. contributed to data analyses; E.B. and T.C. performed image analyses; J.O. contributed to podocyte in vitro work, B.G., D.T.B. and B.W.G. performed in vitro analyses of the D167F/D172K PC mutant; C.T.E. provided antibodies and helped interpret experimental work; H.W. helped generate APChigh mice and made ThbdPro/Pro mice available; A.B. helped design experiments; P.P.N. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Berend Isermann.

Ethics declarations

Competing interests

C.T.E. holds a patent and license for the use of APC in sepsis and production of protein C from plasma. He also has patents on detecting circulating APC levels. B.W.G., D.T.B. and B.G. are employees of Lilly Research Laboratories, a division of Eli Lilly & Co., which produces recombinant human protein C for the treatment of severe sepsis.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–5, Supplementary Methods, Supplementary Figs. 1–4 (PDF 377 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Isermann, B., Vinnikov, I., Madhusudhan, T. et al. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med 13, 1349–1358 (2007). https://doi.org/10.1038/nm1667

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1667

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing