Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype

Abstract

Dyslipidemia is associated with a prothrombotic phenotype; however, the mechanisms responsible for enhanced platelet reactivity remain unclear. Proatherosclerotic lipid abnormalities are associated with both enhanced oxidant stress and the generation of biologically active oxidized lipids, including potential ligands for the scavenger receptor CD36, a major platelet glycoprotein. Using multiple mouse in vivo thrombosis models, we now demonstrate that genetic deletion of Cd36 protects mice from hyperlipidemia-associated enhanced platelet reactivity and the accompanying prothrombotic phenotype. Structurally defined oxidized choline glycerophospholipids that serve as high-affinity ligands for CD36 were at markedly increased levels in the plasma of hyperlipidemic mice and in the plasma of humans with low HDL levels, were able to bind platelets via CD36 and, at pathophysiological levels, promoted platelet activation via CD36. Thus, interactions of platelet CD36 with specific endogenous oxidized lipids play a crucial role in the well-known clinical associations between dyslipidemia, oxidant stress and a prothrombotic phenotype.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD36 plays a role in thrombosis in vivo in the setting of hypercholesterolemia.
Figure 2: CD36 deficiency blunts platelet responses to agonists in hypercholesterolemic plasma.
Figure 3: Platelet CD36 specifically binds oxPCCD36 and LDL oxidized by MPO-H2O2-NO2 system.
Figure 4: oxPCCD36 activates platelet fibrinogen receptor integrin αIIbβ3 in a CD36-dependent manner.
Figure 5: oxPCCD36 induce platelet P-selectin expression in a CD36-dependent manner.

Similar content being viewed by others

References

  1. Trip, M.D., Cats, V.M., van Capelle, F.J. & Vreeken, J. Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N. Engl. J. Med. 322, 1549–1554 (1990).

    Article  CAS  Google Scholar 

  2. Lacoste, L. et al. Hyperlipidemia and coronary disease. Correction of the increased thrombogenic potential with cholesterol reduction. Circulation 92, 3172–3177 (1995).

    Article  CAS  Google Scholar 

  3. Kabbani, S.S. et al. Platelet reactivity characterized prospectively: a determinant of outcome 90 days after percutaneous coronary intervention. Circulation 104, 181–186 (2001).

    Article  CAS  Google Scholar 

  4. Vanschoonbeek, K. et al. Thrombin-induced hyperactivity of platelets of young stroke patients: involvement of thrombin receptors in the subject-dependent variability in Ca2+ signal generation. Thromb. Haemost. 88, 931–937 (2002).

    Article  CAS  Google Scholar 

  5. Kabbani, S.S. et al. Usefulness of platelet reactivity before percutaneous coronary intervention in determining cardiac risk one year later. Am. J. Cardiol. 91, 876–878 (2003).

    Article  Google Scholar 

  6. Carvalho, A.C., Colman, R.W. & Lees, R.S. Platelet function in hyperlipoproteinemia. N. Engl. J. Med. 290, 434–438 (1974).

    Article  CAS  Google Scholar 

  7. Stuart, M.J., Gerrard, J.M. & White, J.G. Effect of cholesterol on production of thromboxane b2 by platelets in vitro. N. Engl. J. Med. 302, 6–10 (1980).

    Article  CAS  Google Scholar 

  8. Davi, G. et al. Increased thromboxane biosynthesis in type IIa hypercholesterolemia. Circulation 85, 1792–1798 (1992).

    Article  CAS  Google Scholar 

  9. Davi, G. et al. Increased levels of soluble P-selectin in hypercholesterolemic patients. Circulation 97, 953–957 (1998).

    Article  CAS  Google Scholar 

  10. Cipollone, F. et al. Association between enhanced soluble CD40L and prothrombotic state in hypercholesterolemia: effects of statin therapy. Circulation 106, 399–402 (2002).

    Article  CAS  Google Scholar 

  11. Wang, T.H., Bhatt, D.L. & Topol, E.J. Aspirin and clopidogrel resistance: an emerging clinical entity. Eur. Heart J. (2005).

  12. Salonen, J.T. et al. Effects of antioxidant supplementation on platelet function: a randomized pair-matched, placebo-controlled, double-blind trial in men with low antioxidant status. Am. J. Clin. Nutr. 53, 1222–1229 (1991).

    Article  CAS  Google Scholar 

  13. Vericel, E., Januel, C., Carreras, M., Moulin, P. & Lagarde, M. Diabetic patients without vascular complications display enhanced basal platelet activation and decreased antioxidant status. Diabetes 53, 1046–1051 (2004).

    Article  CAS  Google Scholar 

  14. Morita, H., Ikeda, H., Haramaki, N., Eguchi, H. & Imaizumi, T. Only two-week smoking cessation improves platelet aggregability and intraplatelet redox imbalance of long-term smokers. J. Am. Coll. Cardiol. 45, 589–594 (2005).

    Article  Google Scholar 

  15. Berliner, J.A. & Watson, A.D. A role for oxidized phospholipids in atherosclerosis. N. Engl. J. Med. 353, 9–11 (2005).

    Article  CAS  Google Scholar 

  16. Podrez, E.A. et al. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J. Biol. Chem. 277, 38503–38516 (2002).

    Article  CAS  Google Scholar 

  17. Podrez, E.A. et al. A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J. Biol. Chem. 277, 38517–38523 (2002).

    Article  CAS  Google Scholar 

  18. Sun, M. et al. Light-induced oxidation of photoreceptor outer segment phospholipids generates ligands for CD36-mediated phagocytosis by retinal pigment epithelium: a potential mechanism for modulating outer segment phagocytosis under oxidant stress conditions. J. Biol. Chem. 281, 4222–4230 (2006).

    Article  CAS  Google Scholar 

  19. Podrez, E.A. et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J. Clin. Invest. 105, 1095–1108 (2000).

    Article  CAS  Google Scholar 

  20. Febbraio, M., Hajjar, D.P. & Silverstein, R.L. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest. 108, 785–791 (2001).

    Article  CAS  Google Scholar 

  21. Febbraio, M. et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J. Clin. Invest. 105, 1049–1056 (2000).

    Article  CAS  Google Scholar 

  22. Tandon, N.N., Lipsky, R.H., Burgess, W.H. & Jamieson, G.A. Isolation and characterization of platelet glycoprotein IV (CD36). J. Biol. Chem. 264, 7570–7575 (1989).

    CAS  PubMed  Google Scholar 

  23. Hoebe, K. et al. CD36 is a sensor of diacylglycerides. Nature 433, 523–527 (2005).

    Article  CAS  Google Scholar 

  24. Podrez, E.A., Schmitt, D., Hoff, H.F. & Hazen, S.L. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J. Clin. Invest. 103, 1547–1560 (1999).

    Article  CAS  Google Scholar 

  25. Kieffer, N. et al. Developmentally-regulated expression of a 78-kDa erythroblast membrane glycoprotein immunologically related to the platelet thrombospondin receptor. Biochem. J. 262, 835–842 (1989).

    Article  CAS  Google Scholar 

  26. Watson, A.D. et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally-oxidized low-density lipoproteins that induce monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem. 272, 13597–13607 (1997).

    Article  CAS  Google Scholar 

  27. Boullier, A. et al. Phosphocholine as a pattern recognition ligand for CD36. J. Lipid Res. 46, 969–976 (2005).

    Article  CAS  Google Scholar 

  28. Simon, D.I. et al. Decreased neointimal formation in Mac1−/− mice reveals a role for inflammation in vascular repair after angioplasty. J. Clin. Invest. 105, 293–300 (2000).

    Article  CAS  Google Scholar 

  29. Sarma, J. et al. Increased platelet binding to circulating monocytes in acute coronary syndromes. Circulation 105, 2166–2171 (2002).

    Article  Google Scholar 

  30. Huo, Y. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med. 9, 61–67 (2003).

    Article  CAS  Google Scholar 

  31. Pearce, S.F. et al. Recombinant glutathione S-transferase/CD36 fusion proteins define an oxidized low-density lipoprotein–binding domain. J. Biol. Chem. 273, 34875–34881 (1998).

    Article  CAS  Google Scholar 

  32. Febbraio, M., Guy, E. & Silverstein, R.L. Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 24, 2333–2338 (2004).

    Article  CAS  Google Scholar 

  33. Eitzman, D.T., Westrick, R.J., Xu, Z., Tyson, J. & Ginsburg, D. Hyperlipidemia promotes thrombosis after injury to atherosclerotic vessels in apolipoprotein E–deficient mice. Arterioscler. Thromb. Vasc. Biol. 20, 1831–1834 (2000).

    Article  CAS  Google Scholar 

  34. Schafer, K. et al. Enhanced thrombosis in atherosclerosis-prone mice is associated with increased arterial expression of plasminogen activator inhibitor-1. Arterioscler. Thromb. Vasc. Biol. 23, 2097–2103 (2003).

    Article  Google Scholar 

  35. Barter, P.J. et al. Antiinflammatory properties of HDL. Circ. Res. 95, 764–772 (2004).

    Article  CAS  Google Scholar 

  36. Bodart, V. et al. CD36 mediates the cardiovascular action of growth hormone-releasing peptides in the heart. Circ. Res. 90, 844–849 (2002).

    Article  CAS  Google Scholar 

  37. Philips, J.A., Rubin, E.J. & Perrimon, N. Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science 309, 1251–1253 (2005).

    Article  CAS  Google Scholar 

  38. Tandon, N.N., Ockenhouse, C.F., Greco, N.J. & Jamieson, G.A. Adhesive functions of platelets lacking glycoprotein IV (CD36). Blood 78, 2809–2813 (1991).

    CAS  PubMed  Google Scholar 

  39. Englyst, N.A., Taube, J.M., Aitman, T.J., Baglin, T.P. & Byrne, C.D. A novel role for CD36 in VLDL-enhanced platelet activation. Diabetes 52, 1248–1255 (2003).

    Article  CAS  Google Scholar 

  40. Huang, M.M., Bolen, J.B., Barnwell, J.W., Shattil, S.J. & Brugge, J.S. Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets. Proc. Natl. Acad. Sci. USA 88, 7844–7848 (1991).

    Article  CAS  Google Scholar 

  41. Maschberger, P. et al. Mildly oxidized low-density lipoprotein rapidly stimulates via activation of the lysophosphatidic acid receptor Src family and Syk tyrosine kinases and Ca2+ influx in human platelets. J. Biol. Chem. 275, 19159–19166 (2000).

    Article  CAS  Google Scholar 

  42. Angelillo-Scherrer, A. et al. Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nat. Med. 7, 215–221 (2001).

    Article  CAS  Google Scholar 

  43. Andre, P. et al. CD40L stabilizes arterial thrombi by a β3 integrin–dependent mechanism. Nat. Med. 8, 247–252 (2002).

    Article  CAS  Google Scholar 

  44. Prevost, N. et al. Eph kinases and ephrins support thrombus growth and stability by regulating integrin outside-in signaling in platelets. Proc. Natl. Acad. Sci. USA 102, 9820–9825 (2005).

    Article  CAS  Google Scholar 

  45. Plow, E.F. et al. Related binding mechanisms for fibrinogen, fibronectin, von Willebrand factor, and thrombospondin on thrombin-stimulated human platelets. Blood 66, 724–727 (1985).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Plow for thoughtful comments and criticisms and W. Feng, W. Li and V. Verbovetskaya for technical assistance. This work was supported in part by National Institutes of Health grants HL077213 and HL053315 (E.A.P.) and by a Scientist Development Grant from the American Heart Association (E.A.P.), HL70621 and HL076491 (S.L.H.), HL 70083 (M.F.), HL072942 and HL46403 (R.L.S. and M.F.), HL071625, HL073311 and HL077107 (T.V.B.), HL53315 (R.G.S.), Cleveland Clinic Specialized Centers for Clinically Oriented Research (P01 HL077107, S.L.H.; and P50 HL81011, R.L.S. and M.F.) and the Cleveland Clinic Foundation General Clinical Research Center (M01 RR018390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene A Podrez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods (PDF 128 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podrez, E., Byzova, T., Febbraio, M. et al. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat Med 13, 1086–1095 (2007). https://doi.org/10.1038/nm1626

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1626

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing