Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

α1β1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis

Abstract

Psoriasis is a common T cell–mediated autoimmune inflammatory disease. We show that blocking the interaction of α1β1 integrin (VLA-1) with collagen prevented accumulation of epidermal T cells and immunopathology of psoriasis. α1β1 integrin, a major collagen-binding surface receptor, was exclusively expressed by epidermal but not dermal T cells. α1β1-positive T cells showed characteristic surface markers of effector memory cells and contained high levels of interferon-γ but not interleukin-4. Blockade of α1β1 inhibited migration of T cells into the epidermis in a clinically relevant xenotransplantation model. This was paralleled by a complete inhibition of psoriasis development, comparable to that caused by tumor necrosis factor-α blockers. These results define a crucial role for α1β1 in controlling the accumulation of epidermal type 1 polarized effector memory T cells in a common human immunopathology and provide the basis for new strategies in psoriasis treatment focusing on T cell–extracellular matrix interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of α1β1 on human epidermal but not dermal T cells in psoriasis.
Figure 2: Expression of α1β1 defines a population of epidermal type 1 polarized effector memory T cells in psoriasis.
Figure 3: Expansion of epidermal but not dermal T cells correlates with epidermal psoriasiform changes.
Figure 4: Blockade of α1β1 inhibits migration of T cells through collagen type IV in vitro and accumulation of epidermal T cells in vivo.
Figure 5: Treatment with mAb to α1 inhibits development of psoriasis in the AGR psoriasis mouse model.
Figure 6: Efficacy of α1β1 blockade in the presence of an activated immune compartment in uninvolved psoriatic skin.

Similar content being viewed by others

References

  1. Griffiths, C.E. & Voorhees, J.J. Psoriasis, T cells and autoimmunity. J. R. Soc. Med. 89, 315–319 (1996).

    Article  CAS  Google Scholar 

  2. Davidson, A. & Diamond, B. Autoimmune diseases. N. Engl. J. Med. 345, 340–350 (2001).

    Article  CAS  Google Scholar 

  3. Kupper, T.S. & Fuhlbrigge, R.C. Immune surveillance in the skin: mechanisms and clinical consequences. Nat. Rev. Immunol. 4, 211–222 (2004).

    Article  CAS  Google Scholar 

  4. Nickoloff, B.J. & Nestle, F.O. Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J. Clin. Invest. 113, 1664–1675 (2004).

    Article  CAS  Google Scholar 

  5. Bowcock, A.M. & Krueger, J.G. Getting under the skin: the immunogenetics of psoriasis. Nat. Rev. Immunol. 5, 699–711 (2005).

    Article  CAS  Google Scholar 

  6. Schon, M.P. & Boehncke, W.H. Psoriasis. N. Engl. J. Med. 352, 1899–1912 (2005).

    Article  CAS  Google Scholar 

  7. Chang, J.C. et al. CD8+ T cells in psoriatic lesions preferentially use T-cell receptor V beta 3 and/or V beta 13.1 genes. Proc. Natl. Acad. Sci. USA 91, 9282–9286 (1994).

    Article  CAS  Google Scholar 

  8. Krueger, J.G. et al. Successful ultraviolet B treatment of psoriasis is accompanied by a reversal of keratinocyte pathology and by selective depletion of intraepidermal T cells. J. Exp. Med. 182, 2057–2068 (1995).

    Article  CAS  Google Scholar 

  9. Chamian, F. et al. Alefacept reduces infiltrating T cells, activated dendritic cells, and inflammatory genes in psoriasis vulgaris. Proc. Natl. Acad. Sci. USA 102, 2075–2080 (2005).

    Article  CAS  Google Scholar 

  10. Baker, B.S., Swain, A.F., Fry, L. & Valdimarsson, H. Epidermal T lymphocytes and HLA-DR expression in psoriasis. Br. J. Dermatol. 110, 555–564 (1984).

    Article  CAS  Google Scholar 

  11. Austin, L.M., Ozawa, M., Kikuchi, T., Walters, I.B. & Krueger, J.G. The majority of epidermal T cells in Psoriasis vulgaris lesions can produce type 1 cytokines, interferon-gamma, interleukin-2, and tumor necrosis factor-alpha, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J. Invest. Dermatol. 113, 752–759 (1999).

    Article  CAS  Google Scholar 

  12. Boyman, O. et al. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-α. J. Exp. Med. 199, 731–736 (2004).

    Article  CAS  Google Scholar 

  13. Boyman, O., Conrad, C., Tonel, G., Gilliet, M. & Nestle, F.O. The pathogenic role of tissue-resident immune cells in psoriasis. Trends Immunol. 28, 51–57 (2007).

    Article  Google Scholar 

  14. Ghohestani, R.F., Li, K., Rousselle, P. & Uitto, J. Molecular organization of the cutaneous basement membrane zone. Clin. Dermatol. 19, 551–562 (2001).

    Article  CAS  Google Scholar 

  15. Bosman, F.T. & Stamenkovic, I. Functional structure and composition of the extracellular matrix. J. Pathol. 200, 423–428 (2003).

    Article  CAS  Google Scholar 

  16. Hemler, M.E. VLA proteins in the integrin family: structures, functions, and their role on leukocytes. Annu. Rev. Immunol. 8, 365–400 (1990).

    Article  CAS  Google Scholar 

  17. Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  Google Scholar 

  18. deFougerolles, A.R. Integrins in immune and inflammatory disease. In I Domains in Integrins (ed. Gullberg, D.) 165–184 (Landes Biosciences, Austin, Texas, USA, 2003).

    Google Scholar 

  19. Ben-Horin, S. & Bank, I. The role of very late antigen-1 in immune-mediated inflammation. Clin. Immunol. 113, 119–129 (2004).

    Article  CAS  Google Scholar 

  20. Ray, S.J. et al. The collagen binding α1β1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity 20, 167–179 (2004).

    Article  CAS  Google Scholar 

  21. Fiorucci, S. et al. Importance of innate immunity and collagen binding integrin α1β1 in TNBS-induced colitis. Immunity 17, 769–780 (2002).

    Article  CAS  Google Scholar 

  22. Chaudhari, U. et al. Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: a randomised trial. Lancet 357, 1842–1847 (2001).

    Article  CAS  Google Scholar 

  23. Reich, K. et al. Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial. Lancet 366, 1367–1374 (2005).

    Article  CAS  Google Scholar 

  24. Boehncke, W.H., Kellner, I., Konter, U. & Sterry, W. Differential expression of adhesion molecules on infiltrating cells in inflammatory dermatoses. J. Am. Acad. Dermatol. 26, 907–913 (1992).

    Article  CAS  Google Scholar 

  25. Pauls, K. et al. Role of integrin αE(CD103)β7 for tissue-specific epidermal localization of CD8+ T lymphocytes. J. Invest. Dermatol. 117, 569–575 (2001).

    Article  CAS  Google Scholar 

  26. Teraki, Y. & Shiohara, T. Preferential expression of αEβ7 integrin (CD103) on CD8+ T cells in the psoriatic epidermis: regulation by interleukins 4 and 12 and transforming growth factor-β. Br. J. Dermatol. 147, 1118–1126 (2002).

    Article  CAS  Google Scholar 

  27. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  Google Scholar 

  28. Selin, L.K. & Cornberg, M. Embedding T cells in the matrix. Nat. Med. 10, 343–345 (2004).

    Article  CAS  Google Scholar 

  29. Goldstein, I. et al. Expression of the α1β1 integrin, VLA-1, marks a distinct subset of human CD4+ memory T cells. J. Clin. Invest. 112, 1444–1454 (2003).

    Article  CAS  Google Scholar 

  30. Christophers, E., Parzefall, R. & Braun-Falco, O. Initial events in psoriasis: quantitative assessment. Br. J. Dermatol. 89, 327–334 (1973).

    Article  CAS  Google Scholar 

  31. Ragaz, A. & Ackerman, A.B. Evolution, maturation, and regression of lesions of psoriasis. New observations and correlation of clinical and histologic findings. Am. J. Dermatopathol. 1, 199–214 (1979).

    Article  CAS  Google Scholar 

  32. Gotwals, P.J. et al. Divalent cations stabilize the α1β1 integrin I domain. Biochemistry 38, 8280–8288 (1999).

    Article  CAS  Google Scholar 

  33. Krueger, J.G. & Bowcock, A. Psoriasis pathophysiology: current concepts of pathogenesis. Ann. Rheum. Dis. 64 (suppl. 2), ii30–ii36 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nestle, F.O. et al. Plasmacytoid pre-dendritic cells (PDC) initiate psoriasis through IFN-alpha production. J. Exp. Med. 202, 135–143 (2005).

    Article  CAS  Google Scholar 

  35. Nestle, F.O. & Gilliet, M. Defining upstream elements of psoriasis pathogenesis: an emerging role for interferon alpha. J. Invest. Dermatol. 125, xiv–xv (2005).

    Article  CAS  Google Scholar 

  36. Boyman, O. et al. Activation of dendritic antigen-presenting cells expressing common heat shock protein receptor CD91 during induction of psoriasis. Br. J. Dermatol. 152, 1211–1218 (2005).

    Article  CAS  Google Scholar 

  37. Hayday, A., Theodoridis, E., Ramsburg, E. & Shires, J. Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat. Immunol. 2, 997–1003 (2001).

    Article  CAS  Google Scholar 

  38. Fraki, J.E., Briggaman, R.A. & Lazarus, G.S. Transplantation of psoriatic skin onto nude mice. J. Invest. Dermatol. 80 (suppl.), 31s–35s (1983).

    Article  CAS  Google Scholar 

  39. Clark, R.A. et al. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 176, 4431–4439 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B.J. Nickoloff, M. Gilliet, K.S. Lang and P. Johansen for discussions. We appreciate the excellent technical assistance by C. Dudli and A. Perez. We would further like to thank T. Baechi for help with confocal microscopy. This work was supported by the Swiss National Science Foundation, Biogen-Idec, the Bonizzi-Theler-Foundation and the Wellcome Trust. The authors acknowledge financial support from the UK Department of Health through the National Institute for Health Research Biomedical Research Centre award to Guy's & St Thomas' National Health Service Foundation Trust in partnership with King's College London.

Author information

Authors and Affiliations

Authors

Contributions

C.C., O.B. and G.T. performed mouse, cell culture and molecular biology experiments and data analysis. A.T.-K. performed PCR experiments and data analysis. U.L. performed flow cytometry, culture of cell lines and clones and data analysis. A.d.F., V.K. and H.G. provided expertise, reagents and input into manuscript preparation. Experimental design, data analysis and manuscript preparation were carried out by C.C. and F.O.N. All authors read and commented on the paper.

Corresponding authors

Correspondence to Curdin Conrad or Frank O Nestle.

Ethics declarations

Competing interests

A.d.F., V.K. and H.G. are former employees of Biogen Idec.

F.O.N. has been consulting for and received lecturing fees from Biogen Idec.

The study has received scientific grant support from Biogen Idec.

Supplementary information

Supplementary Fig. 1

CD3+/CD8+ and CD3+/CD4+ epidermal T cells express α1 integrin. (PDF 133 kb)

Supplementary Fig. 2

Extended phenotype of freshly isolated α1β1+ psoriatic T cells. (PDF 120 kb)

Supplementary Fig. 3

Extended phenotype of α1β1 expressing psoriatic T cell lines. (PDF 269 kb)

Supplementary Fig. 4

Extended phenotype of α1β1 expressing psoriatic T cell clones. (PDF 145 kb)

Supplementary Fig. 5

Efficacy of α1β1 blockade in treatment of established psoriatic skin. (PDF 62 kb)

Supplementary Fig. 6

No induction of apoptosis via monoclonal antibody to α1. (PDF 115 kb)

Supplementary Fig. 7

Migration of T cells through collagen type IV increases α1β1-expression on T cells in vitro. (PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conrad, C., Boyman, O., Tonel, G. et al. α1β1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nat Med 13, 836–842 (2007). https://doi.org/10.1038/nm1605

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1605

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing