Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sema3a maintains normal heart rhythm through sympathetic innervation patterning

Abstract

Sympathetic innervation is critical for effective cardiac function. However, the developmental and regulatory mechanisms determining the density and patterning of cardiac sympathetic innervation remain unclear, as does the role of this innervation in arrhythmogenesis. Here we show that a neural chemorepellent, Sema3a, establishes cardiac sympathetic innervation patterning. Sema3a is abundantly expressed in the trabecular layer in early-stage embryos but is restricted to Purkinje fibers after birth, forming an epicardial-to-endocardial transmural sympathetic innervation patterning. Sema3a−/− mice lacked a cardiac sympathetic innervation gradient and exhibited stellate ganglia malformation, which led to marked sinus bradycardia due to sympathetic dysfunction. Cardiac-specific overexpression of Sema3a in transgenic mice (SemaTG) was associated with reduced sympathetic innervation and attenuation of the epicardial-to-endocardial innervation gradient. SemaTG mice demonstrated sudden death and susceptibility to ventricular tachycardia, due to catecholamine supersensitivity and prolongation of the action potential duration. We conclude that appropriate cardiac Sema3a expression is needed for sympathetic innervation patterning and is critical for heart rate control.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Regional heterogeneity of sympathetic innervation in the mouse heart.
Figure 2: Inverse pattern of Sema3a expression and sympathetic innervation in developing hearts.
Figure 3: Cardiac sympathetic innervation patterning is disrupted in Sema3a-deficient mice.
Figure 4: Sema3a-deficient mice display malformation of stellate ganglia and sinus bradycardia.
Figure 5: Cardiac sympathetic innervation patterning was disturbed in SemaTG hearts.
Figure 6: SemaTG mice are highly susceptible to induction of ventricular arrhythmia.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Crick, S.J. et al. Innervation of the human cardiac conduction system. A quantitative immunohistochemical and histochemical study. Circulation 89, 1697–1708 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Randall, W.C., Szentivanyi, M., Pace, J.B., Wechsler, J.S. & Kaye, M.P. Patterns of sympathetic nerve projections onto the canine heart. Circ. Res. 22, 315–323 (1968).

    Article  CAS  PubMed  Google Scholar 

  3. Ito, M. & Zipes, D.P. Efferent sympathetic and vagal innervation of the canine right ventricle. Circulation 90, 1459–1468 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Crick, S.J., Sheppard, M.N., Ho, S.Y. & Anderson, R.H. Localisation and quantitation of autonomic innervation in the porcine heart I: conduction system. J. Anat. 195, 341–357 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chow, L.T., Chow, S.S., Anderson, R.H. & Gosling, J.A. Innervation of the human cardiac conduction system at birth. Br. Heart J. 69, 430–435 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hansson, M., Kjorell, U. & Forsgren, S. Increased immunoexpression of atrial natriuretic peptide in the heart conduction system of the rat after cardiac sympathectomy. J. Mol. Cell. Cardiol. 30, 2047–2057 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Cao, J.M. et al. Nerve sprouting and sudden cardiac death. Circ. Res. 86, 816–821 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Cao, J.M. et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 101, 1960–1969 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Opthof, T. et al. Dispersion of refractoriness in canine ventricular myocardium. Effects of sympathetic stimulation. Circ. Res. 68, 1204–1215 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Priori, S.G. & Corr, P.B. Mechanisms underlying early and delayed afterdepolarizations induced by catecholamines. Am. J. Physiol. 258, H1796–H1805 (1990).

    CAS  PubMed  Google Scholar 

  11. Ieda, M. et al. Endothelin-1 regulates cardiac sympathetic innervation in the rodent heart by controlling nerve growth factor expression. J. Clin. Invest. 113, 876–884 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuruvilla, R. et al. A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell 118, 243–255 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Puschel, A.W., Adams, R.H. & Betz, H. Murine semaphorin D/collapsin is a member of a diverse gene family and creates domains inhibitory for axonal extension. Neuron 14, 941–948 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Kawasaki, T. et al. Requirement of neuropilin 1-mediated Sema3A signals in patterning of the sympathetic nervous system. Development 129, 671–680 (2002).

    CAS  PubMed  Google Scholar 

  15. Tanelian, D.L., Barry, M.A., Johnston, S.A., Le, T. & Smith, G.M. Semaphorin III can repulse and inhibit adult sensory afferents in vivo. Nat. Med. 3, 1398–1401 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Taniguchi, M. et al. Disruption of semaphorin III/D gene causes severe abnormality in peripheral nerve projection. Neuron 19, 519–530 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Behar, O., Golden, J.A., Mashimo, H., Schoen, F.J. & Fishman, M.C. Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383, 525–528 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Pashmforoush, M. et al. Nkx2–5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117, 373–386 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Tago, H., Kimura, H. & Maeda, T. Visualization of detailed acetylcholinesterase fiber and neuron staining in rat brain by a sensitive histochemical procedure. J. Histochem. Cytochem. 34, 1431–1438 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. Kupershmidt, S. et al. Replacement by homologous recombination of the minK gene with lacZ reveals restriction of minK expression to the mouse cardiac conduction system. Circ. Res. 84, 146–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Shusterman, V. et al. Strain-specific patterns of autonomic nervous system activity and heart failure susceptibility in mice. Am. J. Physiol. Heart Circ. Physiol. 282, H2076–H2083 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Saba, S., London, B. & Ganz, L. Autonomic blockade unmasks maturational differences in rate-dependent atrioventricular nodal conduction and facilitation in the mouse. J. Cardiovasc. Electrophysiol. 14, 191–195 (2003).

    Article  PubMed  Google Scholar 

  23. Gulick, J., Subramaniam, A., Neumann, J. & Robbins, J. Isolation and characterization of the mouse cardiac myosin heavy chain genes. J. Biol. Chem. 266, 9180–9185 (1991).

    CAS  PubMed  Google Scholar 

  24. Kitsukawa, T. et al. Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 19, 995–1005 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Xu, X.M. et al. The transmembrane protein semaphorin 6A repels embryonic sympathetic axons. J. Neurosci. 20, 2638–2648 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wright, D.E., White, F.A., Gerfen, R.W., Silos-Santiago, I. & Snider, W.D. The guidance molecule semaphorin III is expressed in regions of spinal cord and periphery avoided by growing sensory axons. J. Comp. Neurol. 361, 321–333 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Tang, X.Q., Tanelian, D.L. & Smith, G.M. Semaphorin3A inhibits nerve growth factor-induced sprouting of nociceptive afferents in adult rat spinal cord. J. Neurosci. 24, 819–827 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dae, M.W. et al. Heterogeneous sympathetic innervation in German shepherd dogs with inherited ventricular arrhythmia and sudden cardiac death. Circulation 96, 1337–1342 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Qu, J. & Robinson, R.B. Cardiac ion channel expression and regulation: the role of innervation. J. Mol. Cell. Cardiol. 37, 439–448 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Sosunov, E.A. et al. Long-term electrophysiological effects of regional cardiac sympathetic denervation of the neonatal dog. Cardiovasc. Res. 51, 659–669 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Stramba-Badiale, M., Lazzarotti, M. & Schwartz, P.J. Development of cardiac innervation, ventricular fibrillation, and sudden infant death syndrome. Am. J. Physiol. 263, H1514–H1522 (1992).

    CAS  PubMed  Google Scholar 

  32. Chantranuwat, C. et al. Sudden, unexpected death in cardiac transplant recipients: an autopsy study. J. Heart Lung Transplant. 23, 683–689 (2004).

    Article  PubMed  Google Scholar 

  33. Gitler, A.D., Lu, M.M. & Epstein, J.A. PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Dev. Cell 7, 107–116 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Gu, C. et al. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev. Cell 5, 45–57 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuo, H.C. et al. A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I(to) and confers susceptibility to ventricular tachycardia. Cell 107, 801–813 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Brunet, S. et al. Heterogeneous expression of repolarizing, voltage-gated K+ currents in adult mouse ventricles. J. Physiol. (Lond.) 559, 103–120 (2004).

    Article  CAS  Google Scholar 

  37. Costantini, D.L. et al. The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell 123, 347–358 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takahashi, T. et al. Increased cardiac adenylyl cyclase expression is associated with increased survival after myocardial infarction. Circulation 114, 388–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Patel, T.D., Jackman, A., Rice, F.L., Kucera, J. & Snider, W.D. Development of sensory neurons in the absence of NGF/TrkA signaling in vivo. Neuron 25, 345–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Mohler, P.J. et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421, 634–639 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Ecker, P.M. et al. Effect of targeted deletions of beta1- and beta2-adrenergic-receptor subtypes on heart rate variability. Am. J. Physiol. Heart Circ. Physiol. 290, H192–H199 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology Circulation 93 1043 1065 (1996).

  43. Wehrens, X.H. et al. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science 304, 292–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Kannankeril, P.J. et al. Mice with the R176Q cardiac ryanodine receptor mutation exhibit catecholamine-induced ventricular tachycardia and cardiomyopathy. Proc. Natl. Acad. Sci. USA 103, 12179–12184 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Robbins (Cincinnati Children's Hospital) for the expression vector containing the α-myosin heavy chain promoter. We also thank Y. Tanimoto, Y. Miyake, H. Kawaguchi, E. Kobayashi and M. Nakamura for technical assistance. We are also grateful to the members of the Fukuda laboratory for their comments on the manuscript. This study was supported in part by research grants from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation.

Author information

Authors and Affiliations

Authors

Contributions

M.I. designed the study, conducted all experiments, and wrote the manuscript. H.K. and K.K. conducted histochemical characterization. F.H. participated in subcloning. Y.I. conducted the growth cone collapse assay. M.T. provided Sema3a−/− mice and Sema3alacZ/lacZ mice. S.M., J.-K.L and I.K participated in and provided advice on the electrophysiology. K.M. and Y.T. participated in histochemical characterization. K.S. conducted the pronuclear microinjection. S.M. and M.S. participated in northern blotting and western blotting. S.O. provided advice on the experimental design. K.F. supported financially and supervised the whole project.

Corresponding author

Correspondence to Keiichi Fukuda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The time course of cardiac sympathetic innervation in developing hearts (PDF 718 kb)

Supplementary Fig. 2

The central conduction system in wild-type hearts (PDF 688 kb)

Supplementary Fig. 3

Sema3a expression and sympathetic innervation in SemaTG hearts (PDF 802 kb)

Supplementary Table 1

Sema3a–deficient mice display sinus bradycardia (PDF 1813 kb)

Supplementary Table 2

Electrophysiological data in WT and SemaTG mice (PDF 2024 kb)

Supplementary Methods (PDF 7 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ieda, M., Kanazawa, H., Kimura, K. et al. Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat Med 13, 604–612 (2007). https://doi.org/10.1038/nm1570

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1570

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing