Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation

Abstract

Treatment with ex vivo–generated regulatory T cells (T-reg) has been regarded as a potentially attractive therapeutic approach for autoimmune diseases. However, the dynamics and function of T-reg in autoimmunity are not well understood. Thus, we developed Foxp3gfp knock-in (Foxp3gfp.KI) mice and myelin oligodendrocyte glycoprotein (MOG)35–55/IAb (MHC class II) tetramers to track autoantigen-specific effector T cells (T-eff) and T-reg in vivo during experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. MOG tetramer–reactive, Foxp3+ T-reg expanded in the peripheral lymphoid compartment and readily accumulated in the central nervous system (CNS), but did not prevent the onset of disease. Foxp3+ T cells isolated from the CNS were effective in suppressing naive MOG-specific T cells, but failed to control CNS-derived encephalitogenic T-eff that secreted interleukin (IL)-6 and tumor necrosis factor (TNF). Our data suggest that in order for CD4+Foxp3+ T-reg to effectively control autoimmune reactions in the target organ, it may also be necessary to control tissue inflammation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T-reg infiltrate the CNS during EAE.
Figure 2: Foxp3/GFP T cells are not converted into T-reg during EAE.
Figure 3: Antigen-specific T-reg are expanded upon immunization with MOG35–55 and can be triggered by MOG35–55 to suppress T-eff responses.
Figure 4: Myelin-specific T-reg accumulate in the CNS.
Figure 5: T-eff isolated from the acutely inflamed CNS are not suppressible by T-reg.

Similar content being viewed by others

References

  1. Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6, 345–352 (2005).

    Article  CAS  Google Scholar 

  2. Kim, J.M., Rasmussen, J.P. & Rudensky, A.Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    Article  CAS  Google Scholar 

  3. Reddy, J. et al. Myelin proteolipid protein-specific CD4+CD25+ regulatory cells mediate genetic resistance to experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 101, 15434–15439 (2004).

    Article  CAS  Google Scholar 

  4. Kohm, A.P., Carpentier, P.A., Anger, H.A. & Miller, S.D. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol. 169, 4712–4716 (2002).

    Article  CAS  Google Scholar 

  5. Herman, A.E., Freeman, G.J., Mathis, D. & Benoist, C. CD4+CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J. Exp. Med. 199, 1479–1489 (2004).

    Article  CAS  Google Scholar 

  6. Piccirillo, C.A. et al. Control of type 1 autoimmune diabetes by naturally occurring CD4+CD25+ regulatory T lymphocytes in neonatal NOD mice. Ann. NY Acad. Sci. 1051, 72–87 (2005).

    Article  CAS  Google Scholar 

  7. Morgan, M.E. et al. CD25+ cell depletion hastens the onset of severe disease in collagen-induced arthritis. Arthritis Rheum. 48, 1452–1460 (2003).

    Article  Google Scholar 

  8. Viglietta, V., Baecher-Allan, C., Weiner, H.L. & Hafler, D.A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971–979 (2004).

    Article  CAS  Google Scholar 

  9. Haas, J. et al. Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur. J. Immunol. 35, 3343–3352 (2005).

    Article  CAS  Google Scholar 

  10. Crispin, J.C., Martinez, A. & Alcocer-Varela, J. Quantification of regulatory T cells in patients with systemic lupus erythematosus. J. Autoimmun. 21, 273–276 (2003).

    Article  Google Scholar 

  11. Alvarado-Sanchez, B. et al. Regulatory T cells in patients with systemic lupus erythematosus. J. Autoimmun. 27, 110–118 (2006).

    Article  CAS  Google Scholar 

  12. Thornton, A.M. & Shevach, E.M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    Article  CAS  Google Scholar 

  13. Walker, L.S., Chodos, A., Eggena, M., Dooms, H. & Abbas, A.K. Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo. J. Exp. Med. 198, 249–258 (2003).

    Article  CAS  Google Scholar 

  14. Klein, L., Khazaie, K. & von Boehmer, H. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc. Natl. Acad. Sci. USA 100, 8886–8891 (2003).

    Article  CAS  Google Scholar 

  15. Hsieh, C.S., Zheng, Y., Liang, Y., Fontenot, J.D. & Rudensky, A.Y. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat. Immunol. 7, 401–410 (2006).

    Article  CAS  Google Scholar 

  16. Tarbell, K.V., Yamazaki, S., Olson, K., Toy, P. & Steinman, R.M. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J. Exp. Med. 199, 1467–1477 (2004).

    Article  CAS  Google Scholar 

  17. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  Google Scholar 

  18. Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  Google Scholar 

  19. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  Google Scholar 

  20. McGeachy, M.J., Stephens, L.A. & Anderton, S.M. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J. Immunol. 175, 3025–3032 (2005).

    Article  CAS  Google Scholar 

  21. Marson, A. et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445, 931–935 (2007).

    Article  CAS  Google Scholar 

  22. Gavin, M.A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    Article  CAS  Google Scholar 

  23. Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936–940 (2007).

    Article  CAS  Google Scholar 

  24. Fontenot, J.D. et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22, 329–341 (2005).

    Article  CAS  Google Scholar 

  25. Bluestone, J.A. & Abbas, A.K. Natural versus adaptive regulatory T cells. Nat. Rev. Immunol. 3, 253–257 (2003).

    Article  CAS  Google Scholar 

  26. Gavin, M.A., Clarke, S.R., Negrou, E., Gallegos, A. & Rudensky, A. Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nat. Immunol. 3, 33–41 (2002).

    Article  CAS  Google Scholar 

  27. Bettelli, E. et al. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med. 197, 1073–1081 (2003).

    Article  CAS  Google Scholar 

  28. Bagaeva, L.V., Williams, L.P. & Segal, B.M. IL-12 dependent/IFNγ independent expression of CCR5 by myelin-reactive T cells correlates with encephalitogenicity. J. Neuroimmunol. 137, 109–116 (2003).

    Article  CAS  Google Scholar 

  29. Glabinski, A.R., Bielecki, B., O'Bryant, S., Selmaj, K. & Ransohoff, R.M. Experimental autoimmune encephalomyelitis: CC chemokine receptor expression by trafficking cells. J. Autoimmun. 19, 175–181 (2002).

    Article  Google Scholar 

  30. Huehn, J. et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J. Exp. Med. 199, 303–313 (2004).

    Article  CAS  Google Scholar 

  31. Apostolou, I. & von Boehmer, H. In vivo instruction of suppressor commitment in naive T cells. J. Exp. Med. 199, 1401–1408 (2004).

    Article  CAS  Google Scholar 

  32. Liu, Y., Teige, I., Birnir, B. & Issazadeh-Navikas, S. Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE. Nat. Med. 12, 518–525 (2006).

    Article  CAS  Google Scholar 

  33. Doganci, A. et al. The IL-6R alpha chain controls lung CD4+CD25+ Treg development and function during allergic airway inflammation in vivo. J. Clin. Invest. 115, 313–325 (2005).

    Article  CAS  Google Scholar 

  34. Bailey, S.L., Schreiner, B., McMahon, E.J. & Miller, S.D. CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4+ TH17 cells in relapsing EAE. Nat. Immunol. 8, 172–180 (2007).

    Article  CAS  Google Scholar 

  35. Gijbels, K., Brocke, S., Abrams, J.S. & Steinman, L. Administration of neutralizing antibodies to interleukin-6 (IL-6) reduces experimental autoimmune encephalomyelitis and is associated with elevated levels of IL-6 bioactivity in central nervous system and circulation. Mol. Med. 1, 795–805 (1995).

    Article  CAS  Google Scholar 

  36. Di Marco, R. et al. Curative effects of recombinant human Interleukin-6 in DA rats with protracted relapsing experimental allergic encephalomyelitis. J. Neuroimmunol. 116, 168–177 (2001).

    Article  CAS  Google Scholar 

  37. Greter, M. et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 11, 328–334 (2005).

    Article  CAS  Google Scholar 

  38. McMahon, E.J., Bailey, S.L., Castenada, C.V., Waldner, H. & Miller, S.D. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med. 11, 335–339 (2005).

    Article  CAS  Google Scholar 

  39. Tanchot, C., Vasseur, F., Pontoux, C., Garcia, C. & Sarukhan, A. Immune regulation by self-reactive T cells is antigen specific. J. Immunol. 172, 4285–4291 (2004).

    Article  CAS  Google Scholar 

  40. Hori, S., Haury, M., Coutinho, A. & Demengeot, J. Specificity requirements for selection and effector functions of CD25+4+ regulatory T cells in anti-myelin basic protein T cell receptor transgenic mice. Proc. Natl. Acad. Sci. USA 99, 8213–8218 (2002).

    Article  CAS  Google Scholar 

  41. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  Google Scholar 

  42. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  Google Scholar 

  43. Kolls, J.K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    Article  CAS  Google Scholar 

  44. van Amelsfort, J.M., Jacobs, K.M., Bijlsma, J.W., Lafeber, F.P. & Taams, L.S. CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum. 50, 2775–2785 (2004).

    Article  Google Scholar 

  45. Cao, D. et al. FOXP3 identifies regulatory CD25bright CD4+ T cells in rheumatic joints. Scand. J. Immunol. 63, 444–452 (2006).

    Article  CAS  Google Scholar 

  46. Ruprecht, C.R. et al. Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia. J. Exp. Med. 201, 1793–1803 (2005).

    Article  CAS  Google Scholar 

  47. Ehrenstein, M.R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J. Exp. Med. 200, 277–285 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Kozoriz for performing the cell sorting. MOG35–55 peptide was provided by D. Teplow (David Geffen School of Medicine, University of California Los Angeles). This work was supported by the National Multiple Sclerosis Society (RG-2571-D-9 to V.K.K. and RG-3882-A-1 to M.O.), the US National Institutes of Health (1R01NS045937-01, 2R01NS35685-06, 2R37NS30843-11, 1R01A144880-03, 2P01A139671-07, 1P01NS38037-04 and 1R01NS046414) and the Juvenile Diabetes Research Foundation Center for Immunological Tolerance at Harvard Medical School. T.K. is supported by the Deutsche Forschungsgemeinschaft (KO 2964/1-1). V.K.K. is a recipient of the Javits Neuroscience Investigator Award from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

T.K. conducted all experiments, prepared the figures and drafted the manuscript; J.R. generated the MOG tetramers; W.G. and M.O. generated the Foxp3gfp.KI mice; E.B., T.R.P. and B.T.B. helped in preparing the MOG35–55/IAb constructs; A.A. helped in generating the Foxp3gfp.KI and SJL Foxp3gfp.KI. mice; R.A.S. performed the immunohistological analyses; K.W.W. supervised the generation of the MOG35–55/IAb constructs; T.B.S. and M.O. supervised the project: V.K.K. initiated and supervised the project and edited the manuscript.

Corresponding authors

Correspondence to Mohamed Oukka or Vijay K Kuchroo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

T-reg population dynamics during EAE. (PDF 733 kb)

Supplementary Fig. 2

Mononuclear cells were isolated from lymph nodes (LN), spleen (SPL), and CNS at different stages of EAE followed by ex vivo-stimulation with PMA/ionomycin and intracellular cytokine staining. (PDF 738 kb)

Supplementary Fig. 3

Natural Foxp3+ T-reg proliferate in vivo. (PDF 320 kb)

Supplementary Fig. 4

T-eff and T-reg dynamics and function during the first disease episode in PLP139-151-induced EAE. (PDF 781 kb)

Supplementary Methods (PDF 155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korn, T., Reddy, J., Gao, W. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med 13, 423–431 (2007). https://doi.org/10.1038/nm1564

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1564

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing