Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rhesus monkey TRIM5α restricts HIV-1 production through rapid degradation of viral Gag polyproteins

Abstract

Mammalian cells have developed diverse strategies to restrict retroviral infection1,2,3,4,5. Retroviruses have therefore evolved to counteract such restriction factors, in order to colonize their hosts4,6. Tripartite motif-containing 5 isoform-α (TRIM5α) protein from rhesus monkey (TRIM5αrh) restricts human immunodeficiency virus type 1 (HIV-1) infection at a postentry, preintegration stage in the viral life cycle, by recognizing the incoming capsid and promoting its premature disassembly7,8. TRIM5α comprises an RBCC (RING, B-box 2 and coiled-coil motifs) domain and a B30.2(SPRY) domain. Sequences in the B30.2(SPRY) domain dictate the potency and specificity of the restriction8,9,10,11. As TRIM5αrh targets incoming mature HIV-1 capsid, but not precursor Gag12, it was assumed that TRIM5αrh did not affect HIV-1 production. Here we provide evidence that TRIM5αrh, but not its human ortholog (TRIM5αhu), blocks HIV-1 production through rapid degradation of HIV-1 Gag polyproteins. The specificity for this restriction is determined by sequences in the RBCC domain. Our observations suggest that TRIM5αrh interacts with HIV-1 Gag during or before Gag assembly through a mechanism distinct from the well-characterized postentry restriction. This finding demonstrates a cellular factor blocking HIV-1 production by actively degrading a viral protein. Further understanding of this previously unknown restriction mechanism may reveal new targets for future anti–HIV-1 therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TRIM5αrh specifically restricts HIV-1 production in rhesus monkey cells.
Figure 2: TRIM5αrh blocks HIV-1 production through rapid degradation of Gag.
Figure 3: Encapsidation of TRIM5αrh in VLPs.
Figure 4: The RBCC domain of TRIM5αrh is responsible for the anti–HIV-1 activity.

Similar content being viewed by others

References

  1. Best, S., Le Tissier, P., Towers, G. & Stoye, J.P. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382, 826–829 (1996).

    Article  CAS  Google Scholar 

  2. Gao, G., Guo, X. & Goff, S.P. Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science 297, 1703–1706 (2002).

    Article  CAS  Google Scholar 

  3. Sayah, D.M., Sokolskaja, E., Berthoux, L. & Luban, J. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430, 569–573 (2004).

    Article  CAS  Google Scholar 

  4. Sheehy, A.M., Gaddis, N.C., Choi, J.D. & Malim, M.H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).

    Article  CAS  Google Scholar 

  5. Wiegand, H.L., Doehle, B.P., Bogerd, H.P. & Cullen, B.R. A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J. 23, 2451–2458 (2004).

    Article  CAS  Google Scholar 

  6. Towers, G.J. et al. Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat. Med. 9, 1138–1143 (2003).

    Article  CAS  Google Scholar 

  7. Stremlau, M. et al. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853 (2004).

    Article  CAS  Google Scholar 

  8. Stremlau, M. et al. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5α restriction factor. Proc. Natl. Acad. Sci. USA 103, 5514–5519 (2006).

    Article  CAS  Google Scholar 

  9. Perez-Caballero, D., Hatziioannou, T., Yang, A., Cowan, S. & Bieniasz, P.D. Human tripartite motif 5α domains responsible for retrovirus restriction activity and specificity. J. Virol. 79, 8969–8978 (2005).

    Article  CAS  Google Scholar 

  10. Song, B. et al. Retrovirus restriction by TRIM5α variants from Old World and New World primates. J. Virol. 79, 3930–3937 (2005).

    Article  CAS  Google Scholar 

  11. Yap, M.W., Nisole, S. & Stoye, J.P. A single amino acid change in the SPRY domain of human Trim5α leads to HIV-1 restriction. Curr. Biol. 15, 73–78 (2005).

    Article  CAS  Google Scholar 

  12. Cowan, S. et al. Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc. Natl. Acad. Sci. USA 99, 11914–11919 (2002).

    Article  CAS  Google Scholar 

  13. Besnier, C., Takeuchi, Y. & Towers, G. Restriction of lentivirus in monkeys. Proc. Natl. Acad. Sci. USA 99, 11920–11925 (2002).

    Article  CAS  Google Scholar 

  14. Munk, C., Brandt, S.M., Lucero, G. & Landau, N.R. A dominant block to HIV-1 replication at reverse transcription in simian cells. Proc. Natl. Acad. Sci. USA 99, 13843–13848 (2002).

    Article  CAS  Google Scholar 

  15. Ikeda, Y. et al. Continuous high-titer HIV-1 vector production. Nat. Biotechnol. 21, 569–572 (2003).

    Article  CAS  Google Scholar 

  16. Hatziioannou, T. et al. Generation of simian-tropic HIV-1 by restriction factor evasion. Science 314, 95 (2006).

    Article  CAS  Google Scholar 

  17. Kamada, K. et al. Generation of HIV-1 derivatives that productively infect macaque monkey lymphoid cells. Proc. Natl. Acad. Sci. USA 103, 16959–16964 (2006).

    Article  CAS  Google Scholar 

  18. Neil, S.J., Eastman, S.W., Jouvenet, N. & Bieniasz, P.D. HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane. PLoS Pathog. 2, e39 (2006).

    Article  Google Scholar 

  19. Garcia-Sastre, A. & Biron, C.A. Type 1 interferons and the virus-host relationship: a lesson in detente. Science 312, 879–882 (2006).

    Article  CAS  Google Scholar 

  20. Nisole, S., Stoye, J.P. & Saib, A. TRIM family proteins: retroviral restriction and antiviral defence. Nat. Rev. Microbiol. 3, 799–808 (2005).

    Article  CAS  Google Scholar 

  21. Morner, A. et al. Primary human immunodeficiency virus type 2 (HIV-2) isolates, like HIV-1 isolates, frequently use CCR5 but show promiscuity in coreceptor usage. J. Virol. 73, 2343–2349 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zufferey, R., Nagy, D., Mandel, R.J., Naldini, L. & Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871–875 (1997).

    Article  CAS  Google Scholar 

  23. Adachi, A. et al. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J. Virol. 59, 284–291 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Collman, R. et al. An infectious molecular clone of an unusual macrophage-tropic and highly cytopathic strain of human immunodeficiency virus type 1. J. Virol. 66, 7517–7521 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Takeuchi, Y., Akutsu, M., Murayama, K., Shimizu, N. & Hoshino, H. Host range mutant of human immunodeficiency virus type 1: modification of cell tropism by a single point mutation at the neutralization epitope in the env gene. J. Virol. 65, 1710–1718 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Luciw, P.A. et al. Genetic and biological comparisons of pathogenic and nonpathogenic molecular clones of simian immunodeficiency virus (SIVmac). AIDS Res. Hum. Retroviruses 8, 395–402 (1992).

    Article  CAS  Google Scholar 

  27. Soares, M.A. et al. A full-length and replication-competent proviral clone of SIVAGM from tantalus monkeys. Virology 228, 394–399 (1997).

    Article  CAS  Google Scholar 

  28. Keckesova, Z., Ylinen, L.M. & Towers, G.J. The human and African green monkey TRIM5α genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc. Natl. Acad. Sci. USA 101, 10780–10785 (2004).

    Article  CAS  Google Scholar 

  29. Simm, M., Shahabuddin, M., Chao, W., Allan, J.S. & Volsky, D.J. Aberrant Gag protein composition of a human immunodeficiency virus type 1 vif mutant produced in primary lymphocytes. J. Virol. 69, 4582–4586 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chesebro, B., Wehrly, K., Nishio, J. & Perryman, S. Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. J. Virol. 66, 6547–6554 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G.J. Towers (University College London) for retroviral vector plasmids expressing TRIM5αrh and TRIM5αagm. We thank M.K. Collins (University College London) for pCNC-SYNGP, D. Trono (Ecole Polytechnique Federale de Lausanne) for pMD-G and pCMV-R8.91, and H. Hoshino (Gunma University) for pGun1WT. The following reagents were obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID). US National Institutes of Health: GHOST(3)R3/X4/R5 cells (V.N. KewalRamani and D.R. Littman, New York University School of Medicine), pLPCX-TRIM5αhu-HA (J. Sodroski and M. Stremlau, Harvard Medical School), monoclonal antibodies to HIV-1 p24 AG3.0 (J. Allan, Southwestern Foundation for Biomedical Research) and 183-H12-5C (B. Chesebro and K. Wehrly, NIAID), pNL4-3 (M. Martin, NIAID), p89.6 (R.G. Collman, University of Pennsylvania School of Medicine), pSIVMAC1A11 (P. Luciw, University of California, Davis) and pSIVAGMtan-1 (M. Soares and B. Hahn, University of Alabama at Birmingham). We thank S. Vongpunsawad for technical support, and R. Cattaneo, E.M. Poeschla and S.J. Russell for helpful discussions. This work was supported by the Mayo Foundation (to Y.I.).

Author information

Authors and Affiliations

Authors

Contributions

R.S. and Y.I. designed the experiments; R.S. and S.O. performed the experiments; J.A.N. contributed new reagents; R.S. and Y.I. analyzed data; and Y.I. supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Yasuhiro Ikeda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Transfection of the TRIM5αrh-specific siRNA (T5α) reduces the levels of TRIM5αrh mRNA and increases the permissivity of the cells to a GFP-carrying HIV-1 vector. (PDF 24 kb)

Supplementary Fig. 2

The TRIM5α-specific siRNA reduces the level of HA-tagged TRIM5α protein expressed from pRhT5α, but not from pRhT5α-ESCAPE. (PDF 24 kb)

Supplementary Fig. 3

Disruption of TRIM5αrh mRNA by different shRNA constructs results in increased HIV-1 production in FrhK4 cells. (PDF 27 kb)

Supplementary Fig. 4

TRIM5arh expression does not affect the levels of HIV-1-specific transcripts. (PDF 29 kb)

Supplementary Fig. 5

pH-GP, which expresses codon-optimized HIV-1 gag-pol genes, produces more Gag proteins than conventional Gag-Pol expression plasmid, pCMV-R8.91. (PDF 19 kb)

Supplementary Fig. 6

Cumulative ELISpot data for lung anti-elastin antibody-secreting cells in Control (n=6) and Emphysema (n=6) groups. (PDF 65 kb)

Supplementary Fig. 7

The TRIM5αrh B30.2(SPRY) domain is not required for the restriction. (PDF 37 kb)

Supplementary Fig. 8

TRIM5αagm blocks HIV-1 production. Reduced FoxP3 expression and IL-10 in emphysema. (PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakuma, R., Noser, J., Ohmine, S. et al. Rhesus monkey TRIM5α restricts HIV-1 production through rapid degradation of viral Gag polyproteins. Nat Med 13, 631–635 (2007). https://doi.org/10.1038/nm1562

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1562

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing