Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure


Cardiac overstimulation by the sympathetic nervous system (SNS) is a salient characteristic of heart failure, reflected by elevated circulating levels of catecholamines. The success of β-adrenergic receptor (βAR) antagonists in heart failure argues for SNS hyperactivity being pathogenic; however, sympatholytic agents targeting α2AR-mediated catecholamine inhibition have been unsuccessful. By investigating adrenal adrenergic receptor signaling in heart failure models, we found molecular mechanisms to explain the failure of sympatholytic agents and discovered a new strategy to lower SNS activity. During heart failure, there is substantial α2AR dysregulation in the adrenal gland, triggered by increased expression and activity of G protein–coupled receptor kinase 2 (GRK2). Adrenal gland–specific GRK2 inhibition reversed α2AR dysregulation in heart failure, resulting in lowered plasma catecholamine levels, improved cardiac βAR signaling and function, and increased sympatholytic efficacy of a α2AR agonist. This is the first demonstration, to our knowledge, of a molecular mechanism for SNS hyperactivity in heart failure, and our study identifies adrenal GRK2 activity as a new sympatholytic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adrenal hypertrophy and overactivity in heart failure.
Figure 2: Adrenal α2AR downregulation in heart failure.
Figure 3: Adrenal GRK2 upregulation in heart failure.
Figure 4: Adrenal GRK2 upregulation leads to enhanced adrenal α2AR desensitization and catecholamine secretion in heart failure.
Figure 5: Inhibition of adrenal GRK2 activity leads to improved function of the failing heart.
Figure 6: Schematic representation of the pathophysiologic role of GRK2 and the therapeutic potential of its inhibition in heart failure.

Similar content being viewed by others


  1. Rich, M.W. Epidemiology, pathophysiology, and etiology of congestive heart failure in older adults. J. Am. Geriatr. Soc. 45, 968–974 (1997).

    Article  CAS  Google Scholar 

  2. Cohn, J.N. et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med. 311, 819–823 (1984).

    Article  CAS  Google Scholar 

  3. Port, J.D. & Bristow, M.R. Altered ß-adrenergic receptor gene regulation and signaling in chronic heart failure. J. Mol. Cell. Cardiol. 33, 887–905 (2001).

    Article  CAS  Google Scholar 

  4. Rockman, H.A. et al. Seven-transmembrane-spanning receptors and heart function. Nature 415, 206–212 (2002).

    Article  CAS  Google Scholar 

  5. Hoffman, B.B. & Taylor, P. Neurotransmission: the autonomic and somatic motor nervous system. in Goodman & Gilman's: The Pharmacological Basis of Therapeutics 10th edn. (eds. Hardman, J.G. & Limbird, L.E.) Ch. 6, 115–154 (McGraw-Hill, New York, 2001).

    Google Scholar 

  6. Young, J.B. & Landsberg, L. Catecholamines and the adrenal medulla. in Williams Textbook of Endocrinology 9th edn. (eds. Wilson, J.D., Foster, D.W., Kronenberg, H.M. & Larsen, P.R.) Ch. 17, 665–728 (W.B. Saunders, Philadelphia, 1998).

    Google Scholar 

  7. Hata, J.A. et al. Genetic manipulation of myocardial β-adrenergic receptor activation and desensitization. J. Mol. Cell. Cardiol. 37, 11–21 (2004).

    Article  CAS  Google Scholar 

  8. Bylund, D.B. et al. International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol. Rev. 46, 121–136 (1994).

    CAS  PubMed  Google Scholar 

  9. Link, R.E. et al. Cardiovascular regulation in mice lacking a2-adrenergic receptor subtypes b and c. Science 273, 803–805 (1996).

    Article  CAS  Google Scholar 

  10. MacMillan, L.B. et al. Central hypotensive effects of the alpha2a-adrenergic receptor subtype. Science 273, 801–803 (1996).

    Article  CAS  Google Scholar 

  11. Brede, M. et al. Differential control of adrenal and sympathetic catecholamine release by α2-adrenoceptor subtypes. Mol. Endocrinol. 17, 1640–1646 (2003).

    Article  CAS  Google Scholar 

  12. Hein, L. et al. Two functionally distinct α2-adrenergic receptors regulate sympathetic neurotransmission. Nature 402, 181–184 (1999).

    Article  CAS  Google Scholar 

  13. Brede, M. et al. Feedback inhibition of catecholamine release by two different alpha2-adrenoceptor subtypes prevents progression of heart failure. Circulation 106, 2491–2496 (2002).

    Article  CAS  Google Scholar 

  14. Brum, P.C. et al. Abnormal cardiac function associated with sympathetic nervous system hyperactivity in mice. Am. J. Physiol. Heart Circ. Physiol. 283, H1838–H1845 (2002).

    Article  CAS  Google Scholar 

  15. Small, K.M. et al. Synergistic polymorphisms of β1- and α2C-adrenergic receptors and the risk of congestive heart failure. N. Engl. J. Med. 347, 1135–1142 (2002).

    Article  CAS  Google Scholar 

  16. Small, K.M. et al. Pharmacology and physiology of human adrenergic receptor polymorphisms. Annu. Rev. Pharmacol. Toxicol. 43, 381–411 (2003).

    Article  CAS  Google Scholar 

  17. Neumeister, A. et al. Sympathoneural and adrenomedullary functional effects of alpha2C-adrenoceptor gene polymorphism in healthy humans. Pharmacogenet. Genomics 15, 143–149 (2005).

    Article  CAS  Google Scholar 

  18. Iaccarino, G. et al. Elevated myocardial and lymphocyte GRK2 expression in human heart failure. Eur. Heart J. 26, 1752–1758 (2005).

    Article  CAS  Google Scholar 

  19. Harding, V.B. et al. Cardiac βARK1 inhibition prolongs survival and augments β blocker therapy in a mouse model of severe heart failure. Proc. Natl. Acad. Sci. USA 98, 5809–5814 (2001).

    Article  CAS  Google Scholar 

  20. Most, P. et al. Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. J. Clin. Invest. 114, 1550–1563 (2004).

    Article  CAS  Google Scholar 

  21. Jewell-Motz, E.A. & Liggett, S.B. G protein-coupled receptor kinase specificity for phosphorylation and desensitization of alpha2-adrenergic receptor subtypes. J. Biol. Chem. 271, 18082–18087 (1996).

    Article  CAS  Google Scholar 

  22. Kurose, H. & Lefkowitz, R.J. Differential desensitization and phosphorylation of three cloned and transfected alpha 2-adrenergic receptor subtypes. J. Biol. Chem. 269, 10093–10099 (1994).

    CAS  PubMed  Google Scholar 

  23. Lefkowitz, R.J. & Whalen, E.J. β-arrestins: traffic cops of cell signaling. Curr. Opin. Cell Biol. 16, 162–168 (2004).

    Article  CAS  Google Scholar 

  24. Wang, Q. et al. Spinophilin blocks arrestin actions in vitro and in vivo at G protein-coupled receptors. Science 304, 1940–1944 (2004).

    Article  CAS  Google Scholar 

  25. Koch, W.J. et al. Cardiac function in mice overexpressing the β-adrenergic receptor kinase or βARK inhibitor. Science 268, 1350–1353 (1995).

    Article  CAS  Google Scholar 

  26. Zhou, Z. & Neher, E. Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J. Physiol. (Lond.) 469, 245–273 (1993).

    Article  CAS  Google Scholar 

  27. Iaccarino, G. et al. Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by β-adrenergic receptor stimulation and blockade. Circulation 98, 1783–1789 (1998).

    Article  CAS  Google Scholar 

  28. Iaccarino, G. β-adrenergic receptor kinase-1 levels in catecholamine-induced myocardial hypertrophy: regulation by β but not α1 adrenergic stimulation. Hypertension 33, 396–401 (1999).

    Article  CAS  Google Scholar 

  29. Floras, J.S. The "unsympathetic" nervous system of heart failure. Circulation 105, 1753–1755 (2002).

    Article  Google Scholar 

  30. Aggarwal, A. et al. Evidence for functional presynaptic alpha-2 adrenoceptors and their down-regulation in human heart failure. J. Am. Coll. Cardiol. 37, 1246–1251 (2001).

    Article  CAS  Google Scholar 

  31. Lang, C.C. et al. Sympathoinhibitory response to clonidine is blunted in patients with heart failure. Hypertension 30, 392–397 (1997).

    Article  CAS  Google Scholar 

  32. Swedberg, K. et al. The effects of moxonidine SR, an imidazoline agonist, on plasma norepinephrine in patients with chronic heart failure. Circulation 105, 1797–1803 (2002).

    Article  CAS  Google Scholar 

  33. Swedberg, K. et al. The effects of moxonidine, a novel imidazoline, on plasma norepinephrine in patients with congestive heart failure: Moxonidine Investigators. J. Am. Coll. Cardiol. 35, 398–404 (2000).

    Article  CAS  Google Scholar 

  34. Eisenhofer, G. et al. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol. Rev. 56, 331–349 (2004).

    Article  CAS  Google Scholar 

  35. Guyenet, P.G. et al. Is the hypotensive effect of clonidine and related drugs due to imidazoline binding sites? Am. J. Physiol. 273, R1580–R1584 (1997).

    CAS  PubMed  Google Scholar 

  36. White, D.C. et al. Preservation of myocardial beta-adrenergic receptor signaling delays the development of heart failure after myocardial infarction. Proc. Natl. Acad. Sci. USA 97, 5428–5433 (2000).

    Article  CAS  Google Scholar 

  37. Wilson, S.P. & Kirschner, N.J. Effects of ascorbic acid, dexamethasone, and insulin on the catecholamine and opioid peptide stores of cultured adrenal medullary chromaffin cells. J. Neurosci. 3, 1971–1978 (1983).

    Article  CAS  Google Scholar 

  38. Pleger, S.T. et al. S100A1 gene therapy preserves in vivo cardiac function after myocardial infarction. Mol. Ther. 12, 1120–1129 (2005).

    Article  CAS  Google Scholar 

  39. Uhlen, S. et al. [3H]RS79948-197 binding to human, rat, guinea pig and pig alpha2A, alpha2B- and alpha2C-adrenoceptors. Comparison with MK912, RX821002, rauwolscine and yohimbine. Eur. J. Pharmacol. 343, 93–101 (1998).

    Article  CAS  Google Scholar 

  40. Perry, S.J. et al. Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science 298, 834–836 (2002).

    Article  CAS  Google Scholar 

Download references


We thank R. Lefkowitz (Duke University Medical Center) for the antibody to βarrs A1CT and M. Santangelo (University of Naples “Federico II”) for providing the human adrenal gland tissue. We also thank J. Kurt Chuprun for technical advice, R. Kerkela for assistance with immunofluorescence, and S. Soltys, M. Kuhn, R.-H. Zhou, M. Shapiro and C. Zincarelli for technical assistance. This work was supported in part by US National Institutes of Health grants R01 HL61690, R01 HL56205 and P01-HL075443 (to W.J.K.) and a fellowship from the Pennsylvania-Delaware Affiliate of the American Heart Association (to A.L.).

Author information

Authors and Affiliations



A.L. conceived the project, conducted all the experiments and wrote the paper. G.R. did the in vivo gene delivery and the echocardiographic and hemodynamic studies. H.F. did the echocardiography in CSQ-Tg mice. A.D.E. contributed to the writing of the paper. W.J.K. supervised the project and wrote the paper.

Corresponding author

Correspondence to Walter J Koch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Echocardiographic analysis of 3-month-old NLC and CSQ/Tg mice. (PDF 16 kb)

Supplementary Fig. 2

Basal and isoproterenol-stimulated hemodynamic responses in 3-month-old NLC and CSQ/Tg mice. (PDF 22 kb)

Supplementary Fig. 3

Echocardiographic analysis of HF rats 10 weeks post-MI (HF) and age-matched sham-operated controls (sham). (PDF 16 kb)

Supplementary Fig. 4

α2-ARs and GRK2 are expressed in human adrenal glands. (PDF 270 kb)

Supplementary Fig. 5

Adenoviral-mediated transfection of primary chromaffin cells. (PDF 87 kb)

Supplementary Table 1

In vivo cardiac functional parameters after adrenal gene delivery. (PDF 114 kb)

Supplementary Methods (PDF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lymperopoulos, A., Rengo, G., Funakoshi, H. et al. Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure. Nat Med 13, 315–323 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing