Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

In vivo imaging of siRNA delivery and silencing in tumors

Abstract

With the increased potential of RNA interference (RNAi) as a therapeutic strategy, new noninvasive methods for detection of siRNA delivery and silencing are urgently needed. Here we describe the development of dual-purpose probes for in vivo transfer of siRNA and the simultaneous imaging of its accumulation in tumors by high-resolution magnetic resonance imaging (MRI) and near-infrared in vivo optical imaging (NIRF). These probes consisted of magnetic nanoparticles labeled with a near-infrared dye and covalently linked to siRNA molecules specific for model or therapeutic targets. Additionally, these nanoparticles were modified with a membrane translocation peptide for intracellular delivery. We show the feasibility of in vivo tracking of tumor uptake of these probes by MRI and optical imaging in two separate tumor models. We also used proof-of-principle optical imaging to corroborate the efficiency of the silencing process. These studies represent the first step toward the advancement of siRNA delivery and imaging strategies, essential for cancer therapeutic product development and optimization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of MN-NIRF-siGFP.
Figure 2: In vitro testing of MN-NIRF-siGFP cell uptake and silencing efficiency in stably transfected 9L-GFP gliosarcoma cells.
Figure 3: In vivo imaging of MN-NIRF-siGFP delivery to tumors.
Figure 4: In vivo imaging of MN-NIRF-siGFP silencing in tumors.
Figure 5: Application of MN-NIRF-siSurvivin in a therapeutic tumor model.

Similar content being viewed by others

References

  1. Bertrand, J.R. et al. Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem. Biophys. Res. Commun. 296, 1000–1004 (2002).

    Article  CAS  Google Scholar 

  2. Brummelkamp, T.R., Bernards, R. & Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247 (2002).

    Article  CAS  Google Scholar 

  3. Xia, H. et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat. Med. 10, 816–820 (2004).

    Article  CAS  Google Scholar 

  4. Song, E. et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. 9, 347–351 (2003).

    Article  CAS  Google Scholar 

  5. Lewis, D.L., Hagstrom, J.E., Loomis, A.G., Wolff, J.A. & Herweijer, H. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat. Genet. 32, 107–108 (2002).

    Article  CAS  Google Scholar 

  6. Layzer, J.M. et al. In vivo activity of nuclease-resistant siRNAs. RNA 10, 766–771 (2004).

    Article  CAS  Google Scholar 

  7. Hassani, Z. et al. Lipid-mediated siRNA delivery down-regulates exogenous gene expression in the mouse brain at picomolar levels. J. Gene Med. 7, 198–207 (2005).

    Article  CAS  Google Scholar 

  8. Landen, C.N., Jr. et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 65, 6910–6918 (2005).

    Article  CAS  Google Scholar 

  9. Takeshita, F. et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc. Natl. Acad. Sci. USA 102, 12177–12180 (2005).

    Article  CAS  Google Scholar 

  10. Song, E. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 23, 709–717 (2005).

    Article  CAS  Google Scholar 

  11. Urban-Klein, B., Werth, S., Abuharbeid, S., Czubayko, F. & Aigner, A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 12, 461–466 (2005).

    Article  CAS  Google Scholar 

  12. Dorn, G. et al. siRNA relieves chronic neuropathic pain. Nucleic Acids Res. 32, e49 (2004).

    Article  Google Scholar 

  13. Hamar, P. et al. Small interfering RNA targeting Fas protects mice against renal ischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA 101, 14883–14888 (2004).

    Article  CAS  Google Scholar 

  14. Bitko, V., Musiyenko, A., Shulyayeva, O. & Barik, S. Inhibition of respiratory viruses by nasally administered siRNA. Nat. Med. 11, 50–55 (2005).

    Article  CAS  Google Scholar 

  15. McCaffrey, A.P. et al. RNA interference in adult mice. Nature 418, 38–39 (2002).

    Article  CAS  Google Scholar 

  16. Yano, J. et al. Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin. Cancer Res. 10, 7721–7726 (2004).

    Article  CAS  Google Scholar 

  17. Chiu, Y.L., Ali, A., Chu, C.Y., Cao, H. & Rana, T.M. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem. Biol. 11, 1165–1175 (2004).

    Article  CAS  Google Scholar 

  18. Moore, A., Medarova, Z., Potthast, A. & Dai, G. In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe. Cancer Res. 64, 1821–1827 (2004).

    Article  CAS  Google Scholar 

  19. Moore, A., Marecos, E., Bogdanov, A., Jr. & Weissleder, R. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214, 568–574 (2000).

    Article  CAS  Google Scholar 

  20. Bourrinet, P. et al. Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest. Radiol. 41, 313–324 (2006).

    Article  CAS  Google Scholar 

  21. Hu-Lieskovan, S., Heidel, J.D., Bartlett, D.W., Davis, M.E. & Triche, T.J. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res. 65, 8984–8992 (2005).

    Article  CAS  Google Scholar 

  22. Morrissey, D.V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23, 1002–1007 (2005).

    Article  CAS  Google Scholar 

  23. Judge, A.D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23, 457–462 (2005).

    Article  CAS  Google Scholar 

  24. Hornung, V. et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11, 263–270 (2005).

    Article  CAS  Google Scholar 

  25. Zaffaroni, N., Pennati, M. & Daidone, M.G. Survivin as a target for new anticancer interventions. J. Cell. Mol. Med. 9, 360–372 (2005).

    Article  CAS  Google Scholar 

  26. Massoud, T.F. & Gambhir, S.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580 (2003).

    Article  CAS  Google Scholar 

  27. Maeda, H., Fang, J., Inutsuka, T. & Kitamoto, Y. Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int. Immunopharmacol. 3, 319–328 (2003).

    Article  CAS  Google Scholar 

  28. Zimmer, C. et al. Tumor cell endocytosis imaging facilitates delineation of the glioma-brain interface. Exp. Neurol. 143, 61–69 (1997).

    Article  CAS  Google Scholar 

  29. Harborth, J. et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev. 13, 83–105 (2003).

    Article  CAS  Google Scholar 

  30. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).

    Article  CAS  Google Scholar 

  31. Zimmermann, T.S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006).

    Article  CAS  Google Scholar 

  32. Tiscornia, G., Singer, O., Ikawa, M. & Verma, I.M. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. USA 100, 1844–1848 (2003).

    Article  CAS  Google Scholar 

  33. Tiscornia, G., Tergaonkar, V., Galimi, F. & Verma, I.M. CRE recombinase-inducible RNA interference mediated by lentiviral vectors. Proc. Natl. Acad. Sci. USA 101, 7347–7351 (2004).

    Article  CAS  Google Scholar 

  34. Haas, J., Park, E.C. & Seed, B. Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr. Biol. 6, 315–324 (1996).

    Article  CAS  Google Scholar 

  35. Moore, A., Marecos, E., Simonova, M., Weissleder, R. & Bogdanov, A., Jr. Novel gliosarcoma cell line expressing green fluorescent protein: a model for quantitative assessment of angiogenesis. Microvasc. Res. 56, 145–153 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Moore and P. Pantazopoulos for technical support with animal surgery. Confocal microscopy was performed at the Confocal Microscopy Core at MGH with technical assistance from I.A.Bagayev.

Author information

Authors and Affiliations

Authors

Contributions

A.M. supervised the project; Z.M. conducted the bioassay, histology and cell biology experiments, and performed the in vivo MRI experiments and the in vivo and ex vivo optical imaging experiments; W.P. performed probe synthesis and characterization of the probe; C.F. performed the ex vivo MRI experiments; V.P. conducted the RT-PCR experiments. A.M., Z.M. and W.P. wrote the manuscript.

Corresponding author

Correspondence to Anna Moore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Contribution of the MPAP membrane translocation peptide to cellular uptake. (PDF 470 kb)

Supplementary Fig. 2

Biodistribution of MN-NIRF-siGFP probe 24 hrs after intravenous administration to tumor bearing mice. (PDF 462 kb)

Supplementary Fig. 3

Tumoral accumulation of MN-NIRF-siGFP probe. (PDF 259 kb)

Supplementary Fig. 4

Immunostimulatory and cytotoxic effects of MN-NIRF-siGFP. (PDF 199 kb)

Supplementary Methods (PDF 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medarova, Z., Pham, W., Farrar, C. et al. In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13, 372–377 (2007). https://doi.org/10.1038/nm1486

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1486

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing