Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes

A Corrigendum to this article was published on 01 August 2006

Abstract

The mechanisms through which hematopoietic cytokines accelerate revascularization are unknown. Here, we show that the magnitude of cytokine-mediated release of SDF-1 from platelets and the recruitment of nonendothelial CXCR4+VEGFR1+ hematopoietic progenitors, 'hemangiocytes,' constitute the major determinant of revascularization. Soluble Kit-ligand (sKitL), thrombopoietin (TPO, encoded by Thpo) and, to a lesser extent, erythropoietin (EPO) and granulocyte-macrophage colony-stimulating factor (GM-CSF) induced the release of SDF-1 from platelets, enhancing neovascularization through mobilization of CXCR4+VEGFR1+ hemangiocytes. Although revascularization of ischemic hindlimbs was partially diminished in mice deficient in both GM-CSF and G-CSF (Csf2−/−Csf3−/−), profound impairment in neovascularization was detected in sKitL-deficient Mmp9−/− as well as thrombocytopenic Thpo−/− and TPO receptor–deficient (Mpl−/−) mice. SDF-1–mediated mobilization and incorporation of hemangiocytes into ischemic limbs were impaired in Thpo−/−, Mpl−/− and Mmp9−/− mice. Transplantation of CXCR4+VEGFR1+ hemangiocytes into Mmp9−/− mice restored revascularization, whereas inhibition of CXCR4 abrogated cytokine- and VEGF-A–mediated mobilization of CXCR4+VEGFR1+ cells and suppressed angiogenesis. In conclusion, hematopoietic cytokines, through graded deployment of SDF-1 from platelets, support mobilization and recruitment of CXCR4+VEGFR1+ hemangiocytes, whereas VEGFR1 is essential for their angiogenic competency for augmenting revascularization. Delivery of SDF-1 may be effective in restoring angiogenesis in individuals with vasculopathies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Hematopoietic cytokines promote ischemic revascularization.
Figure 2: sKitL but not mKitL restores ischemic revascularization in angiogenesis-defective Mmp9−/− mice.
Figure 3: Soluble hematopoietic cytokines induce release of SDF-1 from platelets and recruitment of CXCR4+VEGFR1+ cells, accelerating ischemic revascularization.
Figure 4: SDF-1 reverses the neoangiogenesis defects in Mmp9−/− and Thpo−/− mice in a dose-dependent manner.
Figure 5: Inhibition of CXCR4 and, to a lesser degree, of VEGFR1 blocks VEGF-A–induced mobilization of hemangiocytes and ischemic revascularization.
Figure 6: Retention and incorporation of CXCR4+VEGFR1+ cells, but not CXCR4 or VEGFR1 cells, restore functional neoangiogenesis in Mmp9−/− mice.

Notes

  1. 1.

    NOTE: In the version of this article initially published, one of the micrographs in Figure 4d was incorrect. In Figure 4d, the micrograph showing CD31 staining of AdNull-treated adductor muscle is overlapping with the micrograph showing CD31 staining of the AdNull-treated gastrocnemius muscle. The authors of the article have indicated that the micrograph shown for the adductor muscle was incorrectly included due to an inadvertent error during manuscript preparation, and that the error does not affect the quantitative results shown in Figure 4d or any of the conclusions of the article. The error has been corrected in the HTML and PDF versions of the article.

References

  1. 1

    Rafii, S. & Lyden, D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat. Med. 9, 702–712 (2003).

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Coussens, L.M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Coussens, L.M., Tinkle, C.L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Takakura, N. et al. A role for hematopoietic stem cells in promoting angiogenesis. Cell 102, 199–209 (2000).

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Aicher, A. et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat. Med. 9, 1370–1376 (2003).

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Luttun, A. et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat. Med. 8, 831–840 (2002).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Cursiefen, C. et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Invest. 113, 1040–1050 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Yang, L. et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6, 409–421 (2004).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201 (2001).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Conejo-Garcia, J.R. et al. Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat. Med. 10, 950–958 (2004).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Takahashi, T. et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat. Med. 5, 434–438 (1999).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Heeschen, C. et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102, 1340–1346 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Kertesz, N., Wu, J., Chen, T.H., Sucov, H.M. & Wu, H. The role of erythropoietin in regulating angiogenesis. Dev. Biol. 276, 101–110 (2004).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Henke, M. et al. Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: randomised, double-blind, placebo-controlled trial. Lancet 362, 1255–1260 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Matsui, J., Wakabayashi, T., Asada, M., Yoshimatsu, K. & Okada, M. Stem cell factor/c-kit signaling promotes the survival, migration, and capillary tube formation of human umbilical vein endothelial cells. J. Biol. Chem. 279, 18600–18607 (2004).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Brizzi, M.F. et al. Thrombopoietin stimulates endothelial cell motility and neoangiogenesis by a platelet-activating factor-dependent mechanism. Circ. Res. 84, 785–796 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18

    Zou, Y.R., Kottmann, A.H., Kuroda, M., Taniuchi, I. & Littman, D.R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 (1998).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Avecilla, S.T. et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat. Med. 10, 64–71 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Petit, I. et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol. 3, 687–694 (2002).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Butler, J.M. et al. SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J. Clin. Invest. 115, 86–93 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    Walter, D.H. et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ. Res. 97, 1142–1151 (2005).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Ceradini, D.J. et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858–864 (2004).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    De Falco, E. et al. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 104, 3472–3482 (2004).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Kaplan, R.N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat. Med. 8, 841–849 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Bunting, S. et al. Normal platelets and megakaryocytes are produced in vivo in the absence of thrombopoietin. Blood 90, 3423–3429 (1997).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Gurney, A.L., Carver-Moore, K., de Sauvage, F.J. & Moore, M.W. Thrombocytopenia in c-mpl-deficient mice. Science 265, 1445–1447 (1994).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Basu, S. et al. “Emergency” granulopoiesis in G-CSF-deficient mice in response to Candida albicans infection. Blood 95, 3725–3733 (2000).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires mmp-9 mediated release of kit-ligand. Cell 109, 625–637 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Johnson, C., Sung, H.J., Lessner, S.M., Fini, M.E. & Galis, Z.S. Matrix metalloproteinase-9 is required for adequate angiogenic revascularization of ischemic tissues: potential role in capillary branching. Circ. Res. 94, 262–268 (2004).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Forster, R. et al. Intracellular and surface expression of the HIV-1 coreceptor CXCR4/fusin on various leukocyte subsets: rapid internalization and recycling upon activation. J. Immunol. 160, 1522–1531 (1998).

    CAS  PubMed  Google Scholar 

  33. 33

    Crump, M.P. et al. Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J. 16, 6996–7007 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Perez, L.E. et al. Increased plasma levels of stromal-derived factor-1 (SDF-1/CXCL12) enhance human thrombopoiesis and mobilize human colony-forming cells (CFC) in NOD/SCID mice. Exp. Hematol. 32, 300–307 (2004).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Dar, A. et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat. Immunol. 6, 1038–1046 (2005).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Mohle, R., Green, D., Moore, M.A., Nachman, R.L. & Rafii, S. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc. Natl. Acad. Sci. USA 94, 663–668 (1997).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Li, J.J., Huang, Y.Q., Basch, R. & Karpatkin, S. Thrombin induces the release of angiopoietin-1 from platelets. Thromb. Haemost. 85, 204–206 (2001).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Avraham, H. et al. Effects of the stem cell factor, c-kit ligand, on human megakaryocytic cells. Blood 79, 365–371 (1992).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Kirito, K. & Kaushansky, K. Thrombopoietin stimulates vascular endothelial cell growth factor (VEGF) production in hematopoietic stem cells. Cell Cycle 4, 1729–1731 (2005).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Selheim, F., Holmsen, H. & Vassbotn, F.S. Identification of functional VEGF receptors on human platelets. FEBS Lett. 512, 107–110 (2002).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Grunewald, M. et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124, 175–189 (2006).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Lapidot, T., Dar, A. & Kollet, O. How do stem cells find their way home? Blood 106, 1901–1910 (2005).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Papayannopoulou, T. Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood 103, 1580–1585 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44

    Hattori, K., Heissig, B. & Rafii, S. The regulation of hematopoietic stem cell and progenitor mobilization by chemokine SDF-1. Leuk. Lymphoma 44, 575–582 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Hattori, K. et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97, 3354–3360 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Pelus, L.M. et al. The CXCR4 agonist peptide, CTCE-0021, rapidly mobilizes polymorphonuclear neutrophils and hematopoietic progenitor cells into peripheral blood and synergizes with granulocyte colony-stimulating factor. Exp. Hematol. 33, 295–307 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47

    Broxmeyer, H.E. et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J. Exp. Med. 201, 1307–1318 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Liles, W.C. et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102, 2728–2730 (2003).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Losordo, D.W. & Dimmeler, S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation 109, 2692–2697 (2004).

    PubMed  Article  Google Scholar 

  50. 50

    Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the technical assistance of P. Lau, M. Choy, G. Kanhai, R. Tejada, G. Lam and A. Intrator. We would also like to thank F. de Sauvage from Genentech for providing the Thpo−/− and Mpl−/− mice. S.R. is an investigator of Howard Hughes Medical Institute and is supported by the American Cancer Society, the Lymphoma and Leukemia Society and the National Institutes of Health (RO1-HL075234, HL59312, HL66592 and HL67839). D.K.J. is supported by the Hermione Foundation. D.L. is supported by the Doris Duke Charitable Foundation, the Children's Blood Foundation and a grant from the National Cancer Institute.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shahin Rafii.

Ethics declarations

Competing interests

Daniel Hicklin, Yan Wu and Zhenping Zhu are employees of ImClone Systems, Inc. Hassan Salari is an employee of Chemokine Therapeutics Corporation.

Supplementary information

Supplementary Fig. 1

TPO and SDF-1 accelerate ischemic revascularization. (PDF 1101 kb)

Supplementary Fig. 2

TPO promotes tumor neoangiogenesis. (PDF 4864 kb)

Supplementary Fig. 3

VEGFR1 modulates proangiogenic activity of hemangiocytes and cytokine-mediated release of SDF-1 is impaired in Mmp9−/− platelets. (PDF 1273 kb)

Supplementary Table 1

Phenotypic characterization of hemangiocytes. (PDF 277 kb)

Supplementary Methods (PDF 79 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jin, D., Shido, K., Kopp, HG. et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 12, 557–567 (2006). https://doi.org/10.1038/nm1400

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing