Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Selective cytotoxic T-lymphocyte targeting of tumor immune escape variants


Defects in major histocompatibility complex (MHC) class I–restricted antigen presentation are frequently observed in human cancers and result in escape of tumors from cytotoxic T lymphocyte (CTL) immune surveillance in mice. Here, we show the existence of a unique category of CTLs that can prevent this escape. The CTLs target an alternative repertoire of peptide epitopes that emerge in MHC class I at the surface of cells with impaired function of transporter associated with antigen processing (TAP), tapasin or the proteasome. These peptides, although derived from self antigens such as the commonly expressed Lass5 protein (also known as Trh4), are not presented by normal cells. This explains why they act as immunogenic neoantigens. The newly discovered epitopes can be exploited for immune intervention against processing-deficient tumors through adoptive T-cell transfer or peptide vaccination.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: RMA-S.B7-1–induced T cells selectively recognize and eradicate TAP-deficient cells.
Figure 2: Processing impairment at different stages results in presentation of TEIPPs on cells of diverse tissue origin.
Figure 3: TEIPP-specific CTL reactivity is MHC class I restricted.
Figure 4: Identification of a Db-presented TEIPP.
Figure 5: Analysis of Lass5 expression and vaccination with the Lass5-encoded peptide.

Accession codes




  1. Melief, C.J. et al. Strategies for immunotherapy of cancer. Adv. Immunol. 75, 235–282 (2000).

    Article  CAS  Google Scholar 

  2. Khong, H.T. & Restifo, N.P. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat. Immunol. 3, 999–1005 (2002).

    Article  CAS  Google Scholar 

  3. Hicklin, D.J., Marincola, F.M. & Ferrone, S. HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol. Med. Today 5, 178–186 (1999).

    Article  CAS  Google Scholar 

  4. Seliger, B., Maeurer, M.J. & Ferrone, S. TAP off–tumors on. Immunol. Today 18, 292–299 (1997).

    CAS  PubMed  Google Scholar 

  5. Marincola, F.M., Jaffee, E.M., Hicklin, D.J. & Ferrone, S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv. Immunol. 74, 181–273 (2000).

    Article  CAS  Google Scholar 

  6. Cresswell, P., Bangia, N., Dick, T. & Diedrich, G. The nature of the MHC class I peptide loading complex. Immunol. Rev. 172, 21–28 (1999).

    Article  CAS  Google Scholar 

  7. Van Kaer, L., Ashton-Rickardt, P.G., Ploegh, H.L. & Tonegawa, S. TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD48+ T cells. Cell 71, 1205–1214 (1992).

    Article  CAS  Google Scholar 

  8. Chen, H.L. et al. A functionally defective allele of TAP1 results in loss of MHC class I antigen presentation in a human lung cancer. Nat. Genet. 13, 210–213 (1996).

    Article  CAS  Google Scholar 

  9. Evans, M. et al. Antigen processing defects in cervical carcinomas limit the presentation of a CTL epitope from human papillomavirus 16 E6. J. Immunol. 167, 5420–5428 (2001).

    Article  CAS  Google Scholar 

  10. Alimonti, J. et al. TAP expression provides a general method for improving the recognition of malignant cells in vivo. Nat. Biotechnol. 18, 515–520 (2000).

    Article  CAS  Google Scholar 

  11. Wolpert, E.Z. et al. Generation of CD8+ T cells specific for transporter associated with antigen processing deficient cells. Proc. Natl. Acad. Sci. USA 94, 11496–11501 (1997).

    Article  CAS  Google Scholar 

  12. Vivier, E. & Anfossi, N. Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future. Nat. Rev. Immunol. 4, 190–198 (2004).

    Article  CAS  Google Scholar 

  13. Reits, E.A., Vos, J.C., Gromme, M. & Neefjes, J. The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404, 774–778 (2000).

    Article  CAS  Google Scholar 

  14. Garbi, N. et al. Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nat. Immunol. 1, 234–238 (2000).

    Article  CAS  Google Scholar 

  15. Howell, D. et al. Heterogeneity of RMA-S cell line: derivatives of RMA-S cells lacking H2-Kb and H2-Db expression. Immunogenetics 52, 150–154 (2000).

    Article  CAS  Google Scholar 

  16. Chiang, E.Y., Henson, M. & Stroynowski, I. Correction of defects responsible for impaired Qa-2 class Ib MHC expression on melanoma cells protects mice from tumor growth. J. Immunol. 170, 4515–4523 (2003).

    Article  CAS  Google Scholar 

  17. Winter, E. & Ponting, C.P. TRAM, LAG1 and CLN8: members of a novel family of lipid-sensing domains? Trends Biochem. Sci. 27, 381–383 (2002).

    Article  CAS  Google Scholar 

  18. Riebeling, C., Allegood, J.C., Wang, E., Merrill, A.H., Jr. & Futerman, A.H. Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J. Biol. Chem. 278, 43452–43459 (2003).

    Article  CAS  Google Scholar 

  19. Snyder, H.L., Bacik, I., Yewdell, J.W., Behrens, T.W. & Bennink, J.R. Promiscuous liberation of MHC-class I-binding peptides from the C termini of membrane and soluble proteins in the secretory pathway. Eur. J. Immunol. 28, 1339–1346 (1998).

    Article  CAS  Google Scholar 

  20. Zwaveling, S. et al. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J. Immunol. 169, 350–358 (2002).

    Article  CAS  Google Scholar 

  21. Ossendorp, F., Mengede, E., Camps, M., Filius, R. & Melief, C.J. Specific T-helper cell requirement for optimal induction of cytotoxic T-lymphocytes against major histocompatibility complex class-II negative tumors. J. Exp. Med. 187, 693–702 (1998).

    Article  CAS  Google Scholar 

  22. De Silva, A.D. et al. Thermolabile H-2Kb molecules expressed by transporter associated with antigen processing-deficient RMA-S cells are occupied by low-affinity peptides. J. Immunol. 163, 4413–4420 (1999).

    CAS  PubMed  Google Scholar 

  23. Yewdell, J.W., Reits, E. & Neefjes, J.J. Making sense of mass destruction: quantitating MHC class I antigen presentation. Nat. Rev. Immunol. 3, 952–961 (2003).

    Article  CAS  Google Scholar 

  24. Snyder, H.L. et al. Two novel routes of transporter associated with antigen processing (TAP)-independent major histocompatibility complex class I antigen processing. J. Exp. Med. 186, 1087–1098 (1997).

    Article  CAS  Google Scholar 

  25. Jensen, P.E., Sullivan, B.A., Reed-Loisel, L.M. & Weber, D.A. Qa-1, a nonclassical class I histocompatibility molecule with roles in innate and adaptive immunity. Immunol. Res. 29, 81–92 (2004).

    Article  CAS  Google Scholar 

  26. Wei, M.L. & Cresswell, P. HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 356, 443–446 (1992).

    Article  CAS  Google Scholar 

  27. Henderson, R.A. et al. HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science 255, 1264–1266 (1992).

    Article  CAS  Google Scholar 

  28. Johnsen, A.K., Templeton, D.J., Sy, M.S. & Harding, C.V. Deficiency of transporter for antigen presentation (TAP) in tumor cells allows evasion of immune surveillance and increased tumorigenesis. J. Immunol. 163, 4224–4231 (1999).

    CAS  PubMed  Google Scholar 

  29. Qin, Z. et al. Increased tumorigenicity, but unchanged immunogenicity, of transporter for antigen presentation 1-deficient tumors. Cancer Res. 62, 2856–2860 (2002).

    CAS  PubMed  Google Scholar 

  30. Van Hall, T. et al. Identification of a novel tumor-specific CTL epitope presented by RMA, EL-4, and MBL-2 lymhomas reveals their common origin. J. Immunol. 165, 869–877 (2000).

    Article  CAS  Google Scholar 

  31. Glas, R., Sturmhofel, K., Hammerling, G.J., Karre, K. & Ljunggren, H.G. Restoration of a tumorigenic phenotype by beta 2-microglobulin transfection to EL-4 mutant cells. J. Exp. Med. 175, 843–846 (1992).

    Article  CAS  Google Scholar 

  32. Van Hall, T. et al. Differential influence on cytotoxic T-lymphocyte epitope presentation by controlled expression of either proteasome immunosubunits or PA28. J. Exp. Med. 192, 483–494 (2000).

    Article  CAS  Google Scholar 

  33. Summerton, J. & Weller, D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 7, 187–195 (1997).

    Article  CAS  Google Scholar 

  34. Toomey, J.A. et al. Stochastic acquisition of Qa1 receptors during the development of fetal NK cells in vitro accounts in part but not in whole for the ability of these cells to distinguish between class I-sufficient and class I-deficient targets. J. Immunol. 163, 3176–3184 (1999).

    CAS  Google Scholar 

  35. Falk, K., Rotzschke, O., Stvanovic, S., Jung, G. & Rammensee, H.G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290–296 (1991).

    Article  CAS  Google Scholar 

  36. Meiring, H.D., Van der Heeft, E., Ten Hove, G.J. & De Jong, A.P. Nanoscale LC-MS: technical design and applications to peptide and protein analysis. J. Sep. Sci. 25, 557–568 (2002).

    Article  CAS  Google Scholar 

  37. Hill, A. et al. Herpes simplex virus turns off the TAP to evade host immunity. Nature 375, 411–415 (1995).

    Article  CAS  Google Scholar 

  38. Van Hall, T. et al. Cryptic open reading frames in plasmid vector backbone sequences can provide highly immunogenic cytotoxic T-lymphocyte epitopes. Cancer Res. 58, 3087–3093 (1998).

    CAS  PubMed  Google Scholar 

Download references


The authors would like to thank G.J. Hämmerling for providing knockout mice and S. Stevanovic for supply of motif-bearing peptide libraries. This work was financially supported by the Dutch Cancer Society (UL2002-2709 to T.v.H. and S.L.), the Centre for Medical Systems Biology (a centre of excellence approved by the Netherlands Genomics Initiative), the Swedish Cancer Foundation, the Swedish Medical Research Council, the Royal Swedish Academy of Sciences and Accuro Immunology AB.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Thorbald van Hall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Kb- and Db-eluted peptides from TAP-deficient cells represent two different repertoires. (PDF 37 kb)

Supplementary Fig. 2

Mass spectrometry identification of three peptide sequences that are presented on TAP-deficient RMA-S cells. (PDF 208 kb)

Supplementary Fig. 3

The H-2Db-restricted TEIPP epitope is encoded by the Trh4 gene (PDF 116 kb)

Supplementary Fig. 4

Peptide MCLRMTAVM is detected in Db-eluted fractions from RMA-S. (PDF 220 kb)

Supplementary Table 1

Phenotypic characterization of TEIPP-specific CTL. (PDF 16 kb)

Supplementary Table 2

Identification of Kb-binding peptides from RMA-S. (PDF 11 kb)

Supplementary Table 3

Position screen in the mimotope peptide. (PDF 18 kb)

Supplementary Table 4

Determination of the Db peptide-epitope. (PDF 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van Hall, T., Wolpert, E., van Veelen, P. et al. Selective cytotoxic T-lymphocyte targeting of tumor immune escape variants. Nat Med 12, 417–424 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing