Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pathogenesis of HIV infection: what the virus spares is as important as what it destroys

Abstract

Upon transmission to a new host, HIV targets CCR5+CD4+ effector memory T cells, resulting in acute, massive depletion of these cells from mucosal effector sites. This depletion does not initially compromise the regenerative capacity of the immune system because naive and most central memory T cells are spared. Here, we discuss evidence suggesting that frequent activation of these spared cells during the chronic phase of HIV infection supplies mucosal tissues with short-lived CCR5+CD4+ effector cells that prevent life-threatening infections. This immune activation also facilitates continued viral replication, but infection and killing of target T cells by HIV are selective and the impact on effector-cell lifespan is limited. We propose, however, that persistent activation progressively disrupts the functional organization of the immune system, reducing its regenerative capacity and facilitating viral evolution that leads to loss of the exquisite target cell–sparing selectivity of viral replication, ultimately resulting in AIDS.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Turnover and infection of lymph node, blood and mucosal tissue CD4+ T cells at various stages of activation and differentiation are schematically shown, in the absence or presence of HIV or SIV infection.
Figure 2: Comparing the kinetics of viremia decay50 to a model of BrdU delabeling.
Figure 3: Quantitative and qualitative measures of HIV disease progression.

References

  1. Mehandru, S. et al. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J. Exp. Med. 200, 761–770 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brenchley, J.M. et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J. Exp. Med. 200, 749–759 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guadalupe, M. et al. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J. Virol. 77, 11708–11717 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, Q. et al. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 434, 1148–1152 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Mattapallil, J.J. et al. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434, 1093–1097 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Veazey, R.S. et al. Dynamics of CCR5 expression by CD4(+) T cells in lymphoid tissues during simian immunodeficiency virus infection. J. Virol. 74, 11001–11007 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Veazey, R.S. et al. Identifying the target cell in primary simian immunodeficiency virus (SIV) infection: highly activated memory CD4(+) T cells are rapidly eliminated in early SIV infection in vivo. J. Virol. 74, 57–64 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Picker, L.J. et al. Insufficient production and tissue delivery of CD4+ memory T cells in rapidly progressive simian immunodeficiency virus infection. J. Exp. Med. 200, 1299–1314 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Picker, L.J. & Watkins, D.I. HIV pathogenesis: the first cut is the deepest. Nat. Immunol. 6, 430–432 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Picker, L.J. & Siegelman, M.H. Lymphoid tissues and organs. in Fundamental Immunology, 4th edn. (ed. Paul, W. E.) 479 (Lippincott-Raven, Philadelphia, 1999).

    Google Scholar 

  11. Roman, E. et al. CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function. J. Exp. Med. 196, 957–968 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Salmi, M. & Jalkanen, S. Lymphocyte homing to the gut: attraction, adhesion, and commitment. Immunol. Rev. 206, 100–113 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Newberry, R.D. & Lorenz, R.G. Organizing a mucosal defense. Immunol. Rev. 206, 6–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Campbell, J.J. et al. CCR7 expression and memory T cell diversity in humans. J. Immunol. 166, 877–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Bromley, S.K., Thomas, S.Y. & Luster, A.D. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat. Immunol. 6, 895–901 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Debes, G.F. et al. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat. Immunol. 6, 889–894 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, C.Y. et al. Distinct lineages of T(H)1 cells have differential capacities for memory cell generation in vivo. Nat. Immunol. 3, 852–858 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Wherry, E.J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Brenchley, J.M. et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101, 2711–2720 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Geginat, J., Lanzavecchia, A. & Sallusto, F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 101, 4260–4266 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Hayashi, N., Liu, D., Min, B., Ben-Sasson, S.Z. & Paul, W.E. Antigen challenge leads to in vivo activation and elimination of highly polarized TH1 memory T cells. Proc. Natl. Acad. Sci. USA 99, 6187–6191 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Kunkel, E.J. et al. Expression of the chemokine receptors CCR4, CCR5, and CXCR3 by human tissue-infiltrating lymphocytes. Am. J. Pathol. 160, 347–355 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Veazey, R.S., Marx, P.A. & Lackner, A.A. Vaginal CD4+ T cells express high levels of CCR5 and are rapidly depleted in simian immunodeficiency virus infection. J. Infect. Dis. 187, 769–776 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Mowat, A.M. & Viney, J.L. The anatomical basis of intestinal immunity. Immunol. Rev. 156, 145–166 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Qin, S. et al. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J. Clin. Invest. 101, 746–754 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lawn, S.D., Butera, S.T. & Folks, T.M. Contribution of immune activation to the pathogenesis and transmission of human immunodeficiency virus type 1 infection. Clin. Microbiol. Rev. 14, 753–777 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Douek, D.C., Picker, L.J. & Koup, R.A. T cell dynamics in HIV-1 infection. Annu. Rev. Immunol. 21, 265–304 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. De Boer, R.J., Mohri, H., Ho, D.D. & Perelson, A.S. Turnover rates of B cells, T cells, and NK cells in simian immunodeficiency virus-infected and uninfected rhesus macaques. J. Immunol. 170, 2479–2487 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, C. et al. Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited signaling pathways. J. Leukoc. Biol. 74, 676–682 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Evans, M.R. & Wansbrough-Jones, M.H. Alveolar macrophage activation in HIV infection. J. Infect. 33, 91–94 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Douek, D.C. et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature 417, 95–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Doisne, J.M. et al. CD8+ T cells specific for EBV, cytomegalovirus, and influenza virus are activated during primary HIV infection. J. Immunol. 173, 2410–2418 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Min, B., Foucras, G., Meier-Schellersheim, M. & Paul, W.E. Spontaneous proliferation, a response of naive CD4 T cells determined by the diversity of the memory cell repertoire. Proc. Natl. Acad. Sci. USA 101, 3874–3879 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Freitas, A.A. & Rocha, B. Peripheral T cell survival. Curr. Opin. Immunol. 11, 152–156 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Freitas, A.A. & Rocha, B. Population biology of lymphocytes: the flight for survival. Annu. Rev. Immunol. 18, 83–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Marrack, P. et al. Homeostasis of alpha beta TCR+ T cells. Nat. Immunol. 1, 107–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Cohen Stuart, J.W. et al. The dominant source of CD4+ and CD8+ T-cell activation in HIV infection is antigenic stimulation. J. Acquir. Immune Defic. Syndr. 25, 203–211 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Mohri, H., Bonhoeffer, S., Monard, S., Perelson, A.S. & Ho, D.D. Rapid turnover of T lymphocytes in SIV-infected rhesus macaques. Science 279, 1223–1227 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Hellerstein, M.K. et al. Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection. J. Clin. Invest. 112, 956–966 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lempicki, R.A. et al. Impact of HIV-1 infection and highly active antiretroviral therapy on the kinetics of CD4+ and CD8+ T cell turnover in HIV-infected patients. Proc. Natl. Acad. Sci. USA 97, 13778–13783 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Grossman, Z. & Herberman, R.B. T-cell homeostasis in HIV infection is neither failing nor blind: modified cell counts reflect an adaptive response of the host. Nat. Med. 3, 486–490 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Hazenberg, M.D., Hamann, D., Schuitemaker, H. & Miedema, F. T cell depletion in HIV-1 infection: how CD4+ T cells go out of stock. Nat. Immunol. 1, 285–289 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Grossman, Z., Herberman, R.B. & Dimitrov, D.S. T cell turnover in SIV infection. Science 284, 555a–555b (1999).

    Article  Google Scholar 

  45. Kovacs, J.A. et al. Identification of dynamically distinct subpopulations of T lymphocytes that are differentially affected by HIV. J. Exp. Med. 194, 1731–1741 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grossman, Z., Meier-Schellersheim, M., Sousa, A.E., Victorino, R.M. & Paul, W.E. CD4+ T-cell depletion in HIV infection: are we closer to understanding the cause? Nat. Med. 8, 319–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Feinberg, M.B., McCune, J.M., Miedema, F., Moore, J.P. & Schuitemaker, H. HIV tropism and CD4+ T-cell depletion. Nat. Med. 8, 537 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Silvestri, G. & Feinberg, M.B. Turnover of lymphocytes and conceptual paradigms in HIV infection. J. Clin. Invest. 112, 821–824 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hazenberg, M.D. et al. T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood 95, 249–255 (2000).

    CAS  PubMed  Google Scholar 

  50. Ho, D.D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Wei, X. et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Mohri, H. et al. Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy. J. Exp. Med. 194, 1277–1287 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Macpherson, A.J. & Harris, N.L. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4, 478–485 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Jenkins, M.K. et al. In vivo activation of antigen-specific CD4 T cells. Annu. Rev. Immunol. 19, 23–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Brenchley, J.M., Price, D.A. & Douek, D.C. HIV disease: Fallout from a mucosal catastrophe? Nat. Immunol. (in the press).

  56. Silvestri, G. et al. Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity 18, 441–452 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Merrill, J.E., Koyanagi, Y. & Chen, I.S. Interleukin-1 and tumor necrosis factor alpha can be induced from mononuclear phagocytes by human immunodeficiency virus type 1 binding to the CD4 receptor. J. Virol. 63, 4404–4408 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rieckmann, P., Poli, G., Fox, C.H., Kehrl, J.H. & Fauci, A.S. Recombinant gp120 specifically enhances tumor necrosis factor-alpha production and Ig secretion in B lymphocytes from HIV-infected individuals but not from seronegative donors. J. Immunol. 147, 2922–2927 (1991).

    CAS  PubMed  Google Scholar 

  59. Swingler, S. et al. HIV-1 Nef intersects the macrophage CD40L signalling pathway to promote resting-cell infection. Nature 424, 213–219 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Li, Q.J. et al. CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat. Immunol. 5, 791–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Zack, J.A. et al. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61, 213–222 (1990).

    Article  CAS  PubMed  Google Scholar 

  62. Bukrinsky, M.I., Stanwick, T.L., Dempsey, M.P. & Stevenson, M. Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 254, 423–427 (1991).

    Article  CAS  PubMed  Google Scholar 

  63. Turville, S.G. et al. Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103, 2170–2179 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. McDonald, D. et al. Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300, 1295–1297 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Jolly, C., Kashefi, K., Hollinshead, M. & Sattentau, Q.J. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J. Exp. Med. 199, 283–293 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dimitrov, D.S. et al. Quantitation of human immunodeficiency virus type 1 infection kinetics. J. Virol. 67, 2182–2190 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cheynier, R. et al. HIV and T cell expansion in splenic white pulps is accompanied by infiltration of HIV-specific cytotoxic T lymphocytes. Cell 78, 373–387 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Cheynier, R. et al. Antigenic stimulation by BCG vaccine as an in vivo driving force for SIV replication and dissemination. Nat. Med. 4, 421–427 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Gratton, S., Cheynier, R., Dumaurier, M.J., Oksenhendler, E. & Wain-Hobson, S. Highly restricted spread of HIV-1 and multiply infected cells within splenic germinal centers. Proc. Natl. Acad. Sci. USA 97, 14566–14571 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Grossman, Z., Feinberg, M.B. & Paul, W.E. Multiple modes of cellular activation and virus transmission in HIV infection: a role for chronically and latently infected cells in sustaining viral replication. Proc. Natl. Acad. Sci. USA 95, 6314–6319 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Little, S.J., McLean, A.R., Spina, C.A., Richman, D.D. & Havlir, D.V. Viral dynamics of acute HIV-1 infection. J. Exp. Med. 190, 841–850 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hosmalin, A. et al. HIV-specific effector cytotoxic T lymphocytes and HIV-producing cells colocalize in white pulps and germinal centers from infected patients. Blood 97, 2695–2701 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Geginat, J., Sallusto, F. & Lanzavecchia, A. Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4(+) T cells. J. Exp. Med. 194, 1711–1719 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Neese, R.A. et al. Measurement in vivo of proliferation rates of slow turnover cells by 2H2O labeling of the deoxyribose moiety of DNA. Proc. Natl. Acad. Sci. USA 99, 15345–15350 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. McCune, J.M. et al. Factors influencing T-cell turnover in HIV-1-seropositive patients. J. Clin. Invest. 105, R1–R8 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hellerstein, M. et al. Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. Nat. Med. 5, 83–89 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Macallan, D.C. et al. Measurement and modeling of human T cell kinetics. Eur. J. Immunol. 33, 2316–2326 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, Z.Q. et al. Roles of substrate availability and infection of resting and activated CD4+ T cells in transmission and acute simian immunodeficiency virus infection. Proc. Natl. Acad. Sci. USA 101, 5640–5645 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Grossman, Z., Min, B., Meier-Schellersheim, M. & Paul, W.E. Concomitant regulation of T-cell activation and homeostasis. Nat. Rev. Immunol. 4, 387–395 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Autran, B. et al. Restoration of the immune system with anti-retroviral therapy. Immunol. Lett. 66, 207–211 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Ascher, M.S. & Sheppard, H.W. AIDS as immune system activation: a model for pathogenesis. Clin. Exp. Immunol. 73, 165–167 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ascher, M.S. & Sheppard, H.W. AIDS as immune system activation. II. The panergic imnesia hypothesis. J. Acquir. Immune Defic. Syndr. 3, 177–191 (1990).

    CAS  PubMed  Google Scholar 

  83. Grossman, Z., Bentwich, Z. & Herberman, R.B. From HIV infection to AIDS: are the manifestations of effective immune resistance misinterpreted? Clin. Immunol. Immunopathol. 69, 123–135 (1993).

    Article  CAS  PubMed  Google Scholar 

  84. Liu, Z. et al. CD8+ T-lymphocyte activation in HIV-1 disease reflects an aspect of pathogenesis distinct from viral burden and immunodeficiency. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 18, 332–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Anderson, R.W., Ascher, M.S. & Sheppard, H.W. Direct HIV cytopathicity cannot account for CD4 decline in AIDS in the presence of homeostasis: a worst-case dynamic analysis. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 17, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Bentwich, Z., Kalinkovich, A., Weisman, Z. & Grossman, Z. Immune activation in the context of HIV infection. Clin. Exp. Immunol. 111, 1–2 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Giorgi, J.V. et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J. Infect. Dis. 179, 859–870 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Deeks, S.G. et al. CD4+ T cell kinetics and activation in human immunodeficiency virus-infected patients who remain viremic despite long-term treatment with protease inhibitor-based therapy. J. Infect. Dis. 185, 315–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Sousa, A.E., Carneiro, J., Meier-Schellersheim, M., Grossman, Z. & Victorino, R.M. CD4 T cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J. Immunol. 169, 3400–3406 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. McCune, J.M. The dynamics of CD4+ T-cell depletion in HIV disease. Nature 410, 974–979 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Dion, M.L. et al. HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity 21, 757–768 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Schacker, T.W. et al. Collagen deposition in HIV-1 infected lymphatic tissues and T cell homeostasis. J. Clin. Invest. 110, 1133–1139 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McCune, J.M. et al. High prevalence of thymic tissue in adults with human immunodeficiency virus-1 infection. J. Clin. Invest. 101, 2301–2308 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Roederer, M., De Rosa, S.C., Watanabe, N. & Herzenberg, L.A. Dynamics of fine T-cell subsets during HIV disease and after thymic ablation by mediastinal irradiation. Semin. Immunol. 9, 389–396 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Moore, J.P., Kitchen, S.G., Pugach, P. & Zack, J.A. The CCR5 and CXCR4 coreceptors–central to understanding the transmission and pathogenesis of human immunodeficiency virus type 1 infection. AIDS Res. Hum. Retroviruses 20, 111–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Feinberg, M.B. & Moore, J.P. AIDS vaccine models: challenging challenge viruses. Nat. Med. 8, 207–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Delwart, E.L. et al. Slower evolution of human immunodeficiency virus type 1 quasispecies during progression to AIDS. J. Virol. 71, 7498–7508 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Broussard, S.R. et al. Simian immunodeficiency virus replicates to high levels in naturally infected African green monkeys without inducing immunologic or neurologic disease. J. Virol. 75, 2262–2275 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kornfeld, C. et al. Antiinflammatory profiles during primary SIV infection in African green monkeys are associated with protection against AIDS. J. Clin. Invest. 115, 1082–1091 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Desrosiers, R.C. Prospects for an AIDS vaccine. Nat. Med. 10, 221–223 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Pitcher, C.J. et al. Development and homeostasis of T cell memory in rhesus macaque. J. Immunol. 168, 29–43 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported, in part, by the Intramural Research Program of the US National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases. L.J.P. was supported by NIH grant AI054292.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grossman, Z., Meier-Schellersheim, M., Paul, W. et al. Pathogenesis of HIV infection: what the virus spares is as important as what it destroys. Nat Med 12, 289–295 (2006). https://doi.org/10.1038/nm1380

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1380

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing