Abstract
There is a crucial need for alternatives to native vein or artery for vascular surgery. The clinical efficacy of synthetic, allogeneic or xenogeneic vessels has been limited by thrombosis, rejection, chronic inflammation and poor mechanical properties. Using adult human fibroblasts extracted from skin biopsies harvested from individuals with advanced cardiovascular disease, we constructed tissue-engineered blood vessels (TEBVs) that serve as arterial bypass grafts in long-term animal models. These TEBVs have mechanical properties similar to human blood vessels, without relying upon synthetic or exogenous scaffolding. The TEBVs are antithrombogenic and mechanically stable for 8 months in vivo. Histological analysis showed complete tissue integration and formation of vasa vasorum. The endothelium was confluent and positive for von Willebrand factor. A smooth muscle–specific α-actin–positive cell population developed within the TEBV, suggesting regeneration of a vascular media. Electron microscopy showed an endothelial basement membrane, elastogenesis and a complex collagen network. These results indicate that a completely biological and clinically relevant TEBV can be assembled exclusively from an individual's own cells.
Access options
Subscribe to Journal
Get full journal access for 1 year
$59.00
only $4.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.




References
- 1
Weinberg, C.B. & Bell, E. A blood vessel model constructed from collagen and cultured vascular cells. Science 231, 397–400 (1986).
- 2
Niklason, L.E. et al. Functional arteries grown in vitro. Science 284, 489–493 (1999).
- 3
Chue, W.L. et al. Dog peritoneal and pleural cavities as bioreactors to grow autologous vascular grafts. J. Vasc. Surg. 39, 859–867 (2004).
- 4
Kakisis, J.D., Liapis, C.D., Breuer, C. & Sumpio, B.E. Artificial blood vessel: the Holy Grail of peripheral vascular surgery. J. Vasc. Surg. 41, 349–354 (2005).
- 5
L'Heureux, N., Germain, L., Labbe, R. & Auger, F.A. In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J. Vasc. Surg. 17, 499–509 (1993).
- 6
L'Heureux, N., Paquet, S., Labbe, R., Germain, L. & Auger, F.A. A completely biological tissue-engineered human blood vessel. FASEB J. 12, 47–56 (1998).
- 7
McKee, J.A. et al. Human arteries engineered in vitro. EMBO Rep. 4, 633–638 (2003).
- 8
Poh, M. et al. Blood vessels engineered from human cells. Lancet 365, 2122–2124 (2005).
- 9
Shin'oka, T., Imai, Y. & Ikada, Y. Transplantation of a tissue-engineered pulmonary artery. N. Engl. J. Med. 344, 532–533 (2001).
- 10
Niklason, L.E. Replacement arteries made to order. Science 286, 1493–1494 (1999).
- 11
L'Heureux, N. et al. A human tissue-engineered vascular media: a new model for pharmacological studies of contractile responses. FASEB J. 15, 515–524 (2001).
- 12
Michel, M. et al. Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cell. Dev. Biol. Anim. 35, 318–326 (1999).
- 13
Berglund, J.D., Mohseni, M.M., Nerem, R.M. & Sambanis, A. A biological hybrid model for collagen-based tissue engineered vascular constructs. Biomaterials 24, 1241–1254 (2003).
- 14
Grenier, G. et al. Isolation and culture of the three vascular cell types from a small vein biopsy sample. In Vitro Cell. Dev. Biol. Anim. 39, 131–139 (2003).
- 15
Davis, C., Fischer, J., Ley, K. & Sarembock, I.J. The role of inflammation in vascular injury and repair. J. Thromb. Haemost. 1, 1699–1709 (2003).
- 16
Gittenberger-de Groot, A.C., DeRuiter, M.C., Bergwerff, M. & Poelmann, R.E. Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arterioscler. Thromb. Vasc. Biol. 19, 1589–1594 (1999).
- 17
Wight, T.N. The vascular extracellular matrix. in Artherosclerosis and Coronary Artery Disease (eds. Fuster, V., Ross, R. & Topol, E.) 421–440 (Raven Press, New York, 1996).
- 18
Lamm, P., Juchem, G., Milz, S., Schuffenhauer, M. & Reichart, B. Autologous endothelialized vein allograft: a solution in the search for small-caliber grafts in coronary artery bypass graft operations. Circulation 104, I108–I114 (2001).
- 19
Dobrin, P.B. Mechanical behavior of vascular smooth muscle in cylindrical segments of arteries in vitro. Ann. Biomed. Eng. 12, 497–510 (1984).
- 20
Cambria, R.P. et al. The evolution of morphologic and biomechanical changes in reversed and in-situ vein grafts. Ann. Surg. 205, 167–174 (1987).
- 21
van der Lugt, A. et al. Femorodistal venous bypass evaluated with intravascular ultrasound. Eur. J. Vasc. Endovasc. Surg. 9, 394–402 (1995).
- 22
Varty, K., Porter, K., Bell, P.R. & London, N.J. Vein morphology and bypass graft stenosis. Br. J. Surg. 83, 1375–1379 (1996).
- 23
Chamiot-Clerc, P., Copie, X., Renaud, J.F., Safar, M. & Girerd, X. Comparative reactivity and mechanical properties of human isolated internal mammary and radial arteries. Cardiovasc. Res. 37, 811–819 (1998).
- 24
Girerd, X.J. et al. Incompressibility of the human arterial wall: an in vitro ultrasound study. J. Hypertens. Suppl. 10, S111–S114 (1992).
- 25
van Son, J.A., Smedts, F., Vincent, J.G., van Lier, H.J. & Kubat, K. Comparative anatomic studies of various arterial conduits for myocardial revascularization. J. Thorac. Cardiovasc. Surg. 99, 703–707 (1990).
- 26
van Andel, C.J., Pistecky, P.V. & Borst, C. Mechanical properties of porcine and human arteries: implications for coronary anastomotic connectors. Ann. Thorac. Surg. 76, 58–65 (2003).
Acknowledgements
We thank Genzyme Transplant for providing antithymocyte globulin, Roche for providing mycophenolate mofetil (CellSept) and LifeNet for tissue-procurement assistance. We thank M. Haidekker for his help with the image processing of the computed tomography angiogram. This work was supported in part by a grant from the US National Institutes of Health Small Business Innovative Research (2R44HL64462 to N.L.). We thank M.L. Koranski for his help and for performing canine surgeries.
Author information
Affiliations
Corresponding authors
Ethics declarations
Competing interests
Todd N. McAllister is the Chief Executive Officer and Nicolas LHeureux is the Chief Scientific Officer of Cytograft Tissue Engineering. They also hold a significant portion of the stocks of Cytograft. Nathalie Dusserre and Gerhardt Koenig are employees of Cytograft. Robert C. Robbins has a small number of shares of Cytograft.
Rights and permissions
About this article
Cite this article
L'Heureux, N., Dusserre, N., Konig, G. et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 12, 361–365 (2006). https://doi.org/10.1038/nm1364
Received:
Accepted:
Published:
Issue Date:
Further reading
-
Flow with variable pulse frequencies accelerates vascular recellularization and remodeling of a human bioscaffold
Journal of Biomedical Materials Research Part A (2021)
-
Electrospun tubular vascular grafts to replace damaged peripheral arteries: A preliminary formulation study
International Journal of Pharmaceutics (2021)
-
A biomimetic model of 3D fluid extracellular macromolecular crowding microenvironment fine-tunes ovarian cancer cells dissemination phenotype
Biomaterials (2021)
-
In-vivo assessment of a tissue engineered vascular graft computationally optimized for target vessel compliance
Acta Biomaterialia (2021)
-
Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast
npj Regenerative Medicine (2021)