Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity

Abstract

Cyclooxygenase-2 (COX-2), a rate-limiting enzyme for prostanoid synthesis, has been implicated in the neurotoxicity resulting from hypoxia-ischemia, and its inhibition has therapeutic potential for ischemic stroke. However, COX-2 inhibitors increase the risk of cardiovascular complications. We therefore sought to identify the downstream effectors of COX-2 neurotoxicity, and found that prostaglandin E2 EP1 receptors are essential for the neurotoxicity mediated by COX-2–derived prostaglandin E2. EP1 receptors disrupt Ca2+ homeostasis by impairing Na+-Ca2+ exchange, a key mechanism by which neurons cope with excess Ca2+ accumulation after an excitotoxic insult. Thus, EP1 receptors contribute to neurotoxicity by augmenting the Ca2+ dysregulation underlying excitotoxic neuronal death. Pharmacological inhibition or gene inactivation of EP1 receptors ameliorates brain injury induced by excitotoxicity, oxygen glucose deprivation and middle cerebral artery (MCA) occlusion. An EP1 receptor inhibitor reduces brain injury when administered 6 hours after MCA occlusion, suggesting that EP1 receptor inhibition may be a viable therapeutic option in ischemic stroke.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EP1 receptors contribute to excitotoxic and ischemic brain injury.
Figure 2: EP1 receptors mediate COX-2 neurotoxicity.
Figure 3: EP1 receptors contribute to NMDA-induced [Ca2+]i dysregulation.
Figure 4: EP1 receptors contribute to the impairment of Na+-Ca2+ exchange induced by NMDA.

Similar content being viewed by others

References

  1. Simmons, D.L., Botting, R.M. & Hla, T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 56, 387–437 (2004).

    Article  CAS  Google Scholar 

  2. Hata, A.N. & Breyer, R.M. Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol. Ther. 103, 147–166 (2004).

    Article  CAS  Google Scholar 

  3. Minghetti, L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 63, 901–910 (2004).

    Article  CAS  Google Scholar 

  4. Chen, C. & Bazan, N.G. Lipid signaling: sleep, synaptic plasticity, and neuroprotection. Prostaglandins Other Lipid Mediat. 77, 65–76 (2005).

    Article  CAS  Google Scholar 

  5. Niwa, K., Araki, E., Morham, S.G., Ross, M.E. & Iadecola, C. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. J. Neurosci. 20, 763–770 (2000).

    Article  CAS  Google Scholar 

  6. FitzGerald, G.A. COX-2 and beyond: approaches to prostaglandin inhibition in human disease. Nat. Rev. Drug Discov. 2, 879–890 (2003).

    Article  CAS  Google Scholar 

  7. Topol, E.J. Failing the public health—rofecoxib, Merck, and the FDA. N. Engl. J. Med. 351, 1707–1709 (2004).

    Article  CAS  Google Scholar 

  8. Manabe, Y. et al. Prostanoids, not reactive oxygen species, mediate COX-2-dependent neurotoxicity. Ann. Neurol. 55, 668–675 (2004).

    Article  CAS  Google Scholar 

  9. Carlson, N.G. Neuroprotection of cultured cortical neurons mediated by the cyclooxygenase-2 inhibitor APHS can be reversed by a prostanoid. J. Neurosci. Res. 71, 79–88 (2003).

    Article  CAS  Google Scholar 

  10. Bilak, M. et al. PGE2 receptors rescue motor neurons in a model of amyotrophic lateral sclerosis. Ann. Neurol. 56, 240–248 (2004).

    Article  CAS  Google Scholar 

  11. McCullough, L. et al. Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J. Neurosci. 24, 257–268 (2004).

    Article  CAS  Google Scholar 

  12. Ahmad, A.S., Ahmad, M., de Brum-Fernandes, A.J. & Dore, S. Prostaglandin EP4 receptor agonist protects against acute neurotoxicity. Brain Res. 1066, 71–77 (2005).

    Article  CAS  Google Scholar 

  13. Suganami, T. et al. Role of prostaglandin E receptor EP1 subtype in the development of renal injury in genetically hypertensive rats. Hypertension 42, 1183–1190 (2003).

    Article  CAS  Google Scholar 

  14. Hallinan, E.A. et al. Aminoacetyl moiety as a potential surrogate for diacylhydrazine group of SC-51089, a potent PGE2 antagonist, and its analogs. J. Med. Chem. 39, 609–613 (1996).

    Article  CAS  Google Scholar 

  15. Audoly, L.P. et al. Identification of specific EP receptors responsible for the hemodynamic effects of PGE2. Am. J. Physiol. 277, H924–H930 (1999).

    CAS  PubMed  Google Scholar 

  16. Nogawa, S., Zhang, F., Ross, M.E. & Iadecola, C. Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J. Neurosci. 17, 2746–2755 (1997).

    Article  CAS  Google Scholar 

  17. Caggiano, A.O. & Kraig, R.P. Prostaglandin E receptor subtypes in cultured rat microglia and their role in reducing lipopolysaccharide-induced interleukin-1β production. J. Neurochem. 72, 565–575 (1999).

    Article  CAS  Google Scholar 

  18. Ladeby, R. et al. Microglial cell population dynamics in the injured adult central nervous system. Brain Res. Brain Res. Rev. 48, 196–206 (2005).

    Article  CAS  Google Scholar 

  19. Iadecola, C. et al. Reduced susceptibility to ischemic brain injury and NMDA-mediated neurotoxicity in cyclooxygenase-2 deficient mice. Proc. Natl. Acad. Sci. USA 98, 1294–1299 (2001).

    Article  CAS  Google Scholar 

  20. Sattler, R. & Tymianski, M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol. Neurobiol. 24, 107–129 (2001).

    Article  CAS  Google Scholar 

  21. Choi, D.W. Neurodegeneration: cellular defences destroyed. Nature 433, 696–698 (2005).

    Article  CAS  Google Scholar 

  22. Funk, C.D. et al. Cloning and expression of a cDNA for the human prostaglandin E receptor EP1 subtype. J. Biol. Chem. 268, 26767–26772 (1993).

    CAS  PubMed  Google Scholar 

  23. Randall, R.D. & Thayer, S.A. Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J. Neurosci. 12, 1882–1895 (1992).

    Article  CAS  Google Scholar 

  24. Tymianski, M., Charlton, M.P., Carlen, P.L. & Tator, C.H. Secondary Ca2+ overload indicates early neuronal injury which precedes staining with viability indicators. Brain Res. 607, 319–323 (1993).

    Article  CAS  Google Scholar 

  25. Khodorov, B. Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. Prog. Biophys. Mol. Biol. 86, 279–351 (2004).

    Article  CAS  Google Scholar 

  26. Bano, D. et al. Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120, 275–285 (2005).

    Article  CAS  Google Scholar 

  27. Annunziato, L., Pignataro, G. & Di Renzo, G.F. Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol. Rev. 56, 633–654 (2004).

    Article  CAS  Google Scholar 

  28. Khodorov, B. et al. On the origin of a sustained increase in cytosolic Ca2+ concentration after a toxic glutamate treatment of the nerve cell culture. FEBS Lett. 324, 271–273 (1993).

    Article  CAS  Google Scholar 

  29. Kiedrowski, L. N-methyl-D-aspartate excitotoxicity: relationships among plasma membrane potential, Na+/Ca2+ exchange, mitochondrial Ca2+ overload, and cytoplasmic concentrations of Ca2+, H+, and K+. Mol. Pharmacol. 56, 619–632 (1999).

    Article  CAS  Google Scholar 

  30. Cho, S. et al. The class B scavenger receptor CD36 mediates free radical production and tissue injury in cerebral ischemia. J. Neurosci. 25, 2504–2512 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by US National Institutes of Health (NIH) grants NS35806 and NS34179. C.I. is the recipient of a Javits award from NIH/National Institute of Neurological Disorders and Stroke. We thank B.H. Koller and S.L. Tilley for providing the Ep1−/− mice, L. Qian for studies in hippocampal slice cultures, C. Gooden for tissue cultures studies and C. Pardee for assistance with histology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costantino Iadecola.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

SC51089 is neuroprotective without influencing physiological parameters. (PDF 520 kb)

Supplementary Fig. 2

SC51089 reduces the hippocampal damage produced byoxygen-glucose deprivation but not microglial activation. (PDF 737 kb)

Supplementary Fig. 3

EP1 receptors are present in neurons. (PDF 9892 kb)

Supplementary Fig. 4

NMDA receptors, EP1 receptors, COX-2, and PGE2 synthase are present in neuronal cultures. (PDF 6158 kb)

Supplementary Fig. 5

Effect of SC51089 on the [Ca++]i elevation elicited by glutamate and on Ca++ currents. (PDF 735 kb)

Supplementary Methods

Methods for assessment of neurological deficits. (PDF 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawano, T., Anrather, J., Zhou, P. et al. Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med 12, 225–229 (2006). https://doi.org/10.1038/nm1362

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1362

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing