Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IKK mediates ischemia-induced neuronal death

Abstract

The IκB kinase complex IKK is a central component of the signaling cascade that controls NF-κB–dependent gene transcription. So far, its function in the brain is largely unknown. Here, we show that IKK is activated in a mouse model of stroke. To investigate the function of IKK in brain ischemia we generated mice that contain a targeted deletion of Ikbkb (which encodes IKK2) in mouse neurons and mice that express a dominant inhibitor of IKK in neurons. In both lines, inhibition of IKK activity markedly reduced infarct size. In contrast, constitutive activation of IKK2 enlarged the infarct size. A selective small-molecule inhibitor of IKK mimicked the effect of genetic IKK inhibition in neurons, reducing the infarct volume and cell death in a therapeutic time window of 4.5 h. These data indicate a key function of IKK in ischemic brain damage and suggest a potential role for IKK inhibitors in stroke therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cerebral ischemia activates IKK in neurons.
Figure 2: Deficiency of IKK2 in neurons reduces ischemic brain damage.
Figure 3: Inhibition of IKK in neurons protects against ischemic damage.
Figure 4: Constitutive activation of IKK2 in neurons enhances ischemic damage.
Figure 5: The IKK inhibitor BMS-345541 ameliorates ischemic brain damage.
Figure 6: Inhibition of IKK reduces the expression of genes involved in eicosanoid biosynthesis.

Similar content being viewed by others

References

  1. Dirnagl, U., Iadecola, C. & Moskowitz, M.A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22, 391–397 (1999).

    Article  CAS  Google Scholar 

  2. Bergeron, M., Yu, A.Y., Solway, K.E., Semenza, G.L. & Sharp, F.R. Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur. J. Neurosci. 11, 4159–4170 (1999).

    Article  CAS  Google Scholar 

  3. Iadecola, C. et al. The transcription factor interferon regulatory factor 1 is expressed after cerebral ischemia and contributes to ischemic brain injury. J. Exp. Med. 189, 719–727 (1999).

    Article  CAS  Google Scholar 

  4. Schneider, A. et al. NF-κB is activated and promotes cell death in focal cerebral ischemia. Nat. Med. 5, 554–559 (1999).

    Article  CAS  Google Scholar 

  5. Pizzi, M. et al. Opposing roles for NF-kappa B/Rel factors p65 and c-Rel in the modulation of neuron survival elicited by glutamate and interleukin-1beta. J. Biol. Chem. 277, 20717–20723 (2002).

    Article  CAS  Google Scholar 

  6. Mattson, M.P. & Camandola, S. NF-kappaB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest. 107, 247–254 (2001).

    Article  CAS  Google Scholar 

  7. Qin, Z.H. et al. Nuclear factor kappaB nuclear translocation upregulates c-Myc and p53 expression during NMDA receptor-mediated apoptosis in rat striatum. J. Neurosci. 19, 4023–4033 (1999).

    Article  CAS  Google Scholar 

  8. Denk, A., Wirth, T. & Baumann, B. NF-kappaB transcription factors: critical regulators of hematopoiesis and neuronal survival. Cytokine Growth Factor Rev. 11, 303–320 (2000).

    Article  CAS  Google Scholar 

  9. Hallenbeck, J.M. The many faces of tumor necrosis factor in stroke. Nat. Med. 8, 1363–1368 (2002).

    Article  CAS  Google Scholar 

  10. Scholzke, M.N., Potrovita, I., Subramaniam, S., Prinz, S. & Schwaninger, M. Glutamate activates NF-kappaB through calpain in neurons. Eur. J. Neurosci. 18, 3305–3310 (2003).

    Article  Google Scholar 

  11. Bui, N.T., Livolsi, A., Peyron, J.F. & Prehn, J.H. Activation of nuclear factor kappaB and Bcl-x survival gene expression by nerve growth factor requires tyrosine phosphorylation of IkappaBalpha. J. Cell Biol. 152, 753–764 (2001).

    Article  CAS  Google Scholar 

  12. Karin, M., Yamamoto, Y. & Wang, Q.M. The IKK NF-kappa B system: a treasure trove for drug development. Nat. Rev. Drug Discov. 3, 17–26 (2004).

    Article  CAS  Google Scholar 

  13. Li, Q. & Verma, I.M. NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).

    Article  CAS  Google Scholar 

  14. Hayden, M.S. & Ghosh, S. Signaling to NF-kappaB. Genes Dev. 18, 2195–2224 (2004).

    Article  CAS  Google Scholar 

  15. Sakurai, H. et al. Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J. Biol. Chem. 278, 36916–36923 (2003).

    Article  CAS  Google Scholar 

  16. Pasparakis, M. et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417, 861–866 (2002).

    Article  CAS  Google Scholar 

  17. Minichiello, L. et al. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24, 401–414 (1999).

    Article  CAS  Google Scholar 

  18. Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 23, 99–103 (1999).

    Article  CAS  Google Scholar 

  19. Kaltschmidt, C., Kaltschmidt, B., Henkel, T., Stockinger, H. & P.A., B. Selective recognition of the activated form of transcription factor NF-κB by a monoclonal antibody. Biol. Chem. Hoppe-Seyler 376, 9–16 (1995).

    Article  CAS  Google Scholar 

  20. Endres, M. et al. Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J. Cereb. Blood Flow Metab. 18, 238–247 (1998).

    Article  CAS  Google Scholar 

  21. Gabriel, C., Justicia, C., Camins, A. & Planas, A.M. Activation of nuclear factor-kappaB in the rat brain after transient focal ischemia. Brain Res. Mol. Brain Res. 65, 61–69 (1999).

    Article  CAS  Google Scholar 

  22. Li, Q., Estepa, G., Memet, S., Israel, A. & Verma, I.M. Complete lack of NF-kappaB activity in IKK1 and IKK2 double-deficient mice: additional defect in neurulation. Genes Dev. 14, 1729–1733 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yin, M.J., Yamamoto, Y. & Gaynor, R.B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396, 77–80 (1998).

    Article  CAS  Google Scholar 

  24. Vartiainen, N., Goldsteins, G., Keksa-Goldsteine, V., Chan, P.H. & Koistinaho, J. Aspirin inhibits p44/42 mitogen-activated protein kinase and is protective against hypoxia/reoxygenation neuronal damage. Stroke 34, 752–757 (2003).

    Article  Google Scholar 

  25. Burke, J.R. et al. BMS-345541 is a highly selective inhibitor of I kappa B kinase that binds at an allosteric site of the enzyme and blocks NF-kappa B-dependent transcription in mice. J. Biol. Chem. 278, 1450–1456 (2003).

    Article  CAS  Google Scholar 

  26. Pieper, A.A., Verma, A., Zhang, J. & Snyder, S.H. Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol. Sci. 20, 171–181 (1999).

    Article  CAS  Google Scholar 

  27. Bonventre, J.V. et al. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390, 622–625 (1997).

    Article  CAS  Google Scholar 

  28. Iadecola, C. et al. Reduced susceptibility to ischemic brain injury and N-methyl-D-aspartate-mediated neurotoxicity in cyclooxygenase-2-deficient mice. Proc. Natl. Acad. Sci. USA 98, 1294–1299 (2001).

    Article  CAS  Google Scholar 

  29. Kaltschmidt, C., Kaltschmidt, B., Neumann, H., Wekerle, H. & Baeuerle, P.A. Constitutive NF-κB activity in neurons. Mol. Cell. Biol. 14, 3981–3992 (1994).

    Article  CAS  Google Scholar 

  30. Han, H.S., Karabiyikoglu, M., Kelly, S., Sobel, R.A. & Yenari, M.A. Mild hypothermia inhibits nuclear factor-kappaB translocation in experimental stroke. J. Cereb. Blood Flow Metab. 23, 589–598 (2003).

    Article  CAS  Google Scholar 

  31. Song, Y.S., Lee, Y.S. & Chan, P.H. Oxidative stress transiently decreases the IKK complex (IKKα, β, and γ), an upstream component of NF-κB signaling, after transient focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab. 25, 1301–1311 (2005).

    Article  CAS  Google Scholar 

  32. Khoshnan, A. et al. Activation of the IκB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity. J. Neurosci. 24, 7999–8008 (2004).

    Article  CAS  Google Scholar 

  33. Zhang, W. et al. Neuronal activation of NF-κB contributes to cell death in cerebral ischemia. J. Cereb. Blood Flow Metab. 25, 30–40 (2005).

    Article  Google Scholar 

  34. Chen, L.W. et al. The two faces of IKK and NF-kappaB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nat. Med. 9, 575–581 (2003).

    Article  CAS  Google Scholar 

  35. Luedde, T. et al. Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion-injury. J. Clin. Invest. 115, 849–859 (2005).

    Article  CAS  Google Scholar 

  36. Staub, F. et al. Swelling, acidosis, and irreversible damage of glial cells from exposure to arachidonic acid in vitro. J. Cereb. Blood Flow Metab. 14, 1030–1039 (1994).

    Article  CAS  Google Scholar 

  37. Aguirre, V. et al. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J. Biol. Chem. 277, 1531–1537 (2002).

    Article  CAS  Google Scholar 

  38. Hu, M.C. et al. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117, 225–237 (2004).

    Article  CAS  Google Scholar 

  39. Waterfield, M., Jin, W., Reiley, W., Zhang, M. & Sun, S.C. IkappaB kinase is an essential component of the Tpl2 signaling pathway. Mol. Cell. Biol. 24, 6040–6048 (2004).

    Article  CAS  Google Scholar 

  40. Lamberti, C. et al. Regulation of beta-catenin function by the IkappaB kinases. J. Biol. Chem. 276, 42276–42286 (2001).

    Article  CAS  Google Scholar 

  41. Nurmi, A. et al. Nuclear factor-kappaB contributes to infarction after permanent focal ischemia. Stroke 35, 987–991 (2004).

    Article  Google Scholar 

  42. Williams, A.J. et al. Delayed treatment with MLN519 reduces infarction and associated neurologic deficit caused by focal ischemic brain injury in rats via antiinflammatory mechanisms involving nuclear factor-kappaB activation, gliosis, and leukocyte infiltration. J. Cereb. Blood Flow Metab. 23, 75–87 (2003).

    Article  CAS  Google Scholar 

  43. Chan, P.H. et al. Brain infarction is not reduced in SOD-1 transgenic mice after a permanent focal cerebral ischemia. Neuroreport 5, 293–296 (1993).

    Article  CAS  Google Scholar 

  44. Azoitei, N., Wirth, T. & Baumann, B. Activation of the IκB kinase complex is sufficient for neuronal differentiation of PC12 cells. J. Neurochem. 93, 1487–1501 (2005).

    Article  CAS  Google Scholar 

  45. Yamaoka, S. et al. Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 93, 1231–1240 (1998).

    Article  CAS  Google Scholar 

  46. Ma, J., Qiu, J., Hirt, L., Dalkara, T. & Moskowitz, M.A. Synergistic protective effect of caspase inhibitors and bFGF against brain injury induced by transient focal ischaemia. Br. J. Pharmacol. 133, 345–350 (2001).

    Article  CAS  Google Scholar 

  47. Maier, H.J., Marienfeld, R., Wirth, T. & Baumann, B. Critical role of RelB serine 368 for dimerization and p100 stabilization. J. Biol. Chem. 278, 39242–39250 (2003).

    Article  CAS  Google Scholar 

  48. Wang, X. et al. Inhibition of tumor necrosis factor-alpha-converting enzyme by a selective antagonist protects brain from focal ischemic injury in rats. Mol. Pharmacol. 65, 890–896 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Deutsche Forschungsgemeinschaft grants SCHW 416/4-2 (to M.S.) and SFB 497/B1 (to B.B.), Bundesministerium für Bildung und Forschung grant NGFN2 (to M.S.), and European Union grant QLG1-CT-1999-00202 (to M.P.). We thank H. Schröck (Heidelberg) for help with physiological parameters, R. Kühn (Neuherberg, Germany) for providing CamKII-Cre mice, R. Klein (Munich) for providing Nestin-Cre mice and Y. Qiu (Bristol-Myers Squibb) for his work toward synthesis of BMS-345541.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Schwaninger.

Ethics declarations

Competing interests

James R. Burke is employed by Bristol-Meyers Squibb. Bristol-Meyers Squibb is interested in the development and commercialization of IKK2 inhibitors as therapeutics for the treatment of stroke.

Supplementary information

Supplementary Fig. 1

Nissl staining of coronal brain sections showed no gross anatomical differences between IKK2nKO and control mice. (PDF 203 kb)

Supplementary Fig. 2

Immunohistochemistry of IKK1/2 in sagittal brain slices of IKK2nDN animals. (PDF 277 kb)

Supplementary Fig. 3

Luciferase activity was measured in brain regions identical to Figure 3c. (PDF 78 kb)

Supplementary Fig. 4

Junb expression in IKK2nCA mice and littermate controls was determined by semi-quantitative RT-PCR in brain regions identical to Figure 4. (PDF 54 kb)

Supplementary Fig. 5

Induction of the proapoptotic genes Fas and Myc and of the antiapoptotic genes Birc3, Bdnf, Epo and Csf3 by MCAO was not inhibited by BMS-345541 treatment. (PDF 80 kb)

Supplementary Table 1

Physiological parameters of IKK2CNSKO mice and control mice. (PDF 23 kb)

Supplementary Table 2

Physiological parameteres of C57Bl/6 mice 20 min after intracerebroventricular injection of 2 μl saline or 20 mM BMS-345541 and 15 min after MCAO. (PDF 19 kb)

Supplementary Methods (PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, O., Baumann, B., de Lorenzi, R. et al. IKK mediates ischemia-induced neuronal death. Nat Med 11, 1322–1329 (2005). https://doi.org/10.1038/nm1323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1323

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing