Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The antioxidant function of the p53 tumor suppressor

Abstract

It is widely accepted that the p53 tumor suppressor restricts abnormal cells by induction of growth arrest or by triggering apoptosis. Here we show that, in addition, p53 protects the genome from oxidation by reactive oxygen species (ROS), a major cause of DNA damage and genetic instability. In the absence of severe stresses, relatively low levels of p53 are sufficient for upregulation of several genes with antioxidant products, which is associated with a decrease in intracellular ROS. Downregulation of p53 results in excessive oxidation of DNA, increased mutation rate and karyotype instability, which are prevented by incubation with the antioxidant N-acetylcysteine (NAC). Dietary supplementation with NAC prevented frequent lymphomas characteristic of Trp53-knockout mice, and slowed the growth of lung cancer xenografts deficient in p53. Our results provide a new paradigm for a nonrestrictive tumor suppressor function of p53 and highlight the potential importance of antioxidants in the prophylaxis and treatment of cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of p53 status on intracellular ROS.
Figure 2: Activity of p53 is required for maintaining functional state of several genes with antioxidant products.
Figure 3: Opposite effects of p53 on ROS levels.
Figure 4: Antioxidant effect of p53 after mild stress and pro-oxidant effect of p53 after grave stress.
Figure 5: p53 decreases DNA oxidation and mutagenesis.
Figure 6: Elevated ROS in p53-negative (sip53) tumors and in Trp53−/− mice contribute to accelerated tumor growth, karyotype instability and lymphomagenesis.

Similar content being viewed by others

References

  1. Lane, D.P. p53, guardian of the genome. Nature 358, 15–16 (1992).

    Article  CAS  Google Scholar 

  2. Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95 (2002).

    Article  CAS  Google Scholar 

  3. Finkel, T. Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 15, 247–254 (2003).

    Article  CAS  Google Scholar 

  4. Jackson, A.L. & Loeb, L.A. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat. Res. 477, 7–21 (2001).

    Article  CAS  Google Scholar 

  5. Klungland, A. et al. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc. Natl. Acad. Sci. USA 96, 13300–13305 (1999).

    Article  CAS  Google Scholar 

  6. Beckman, K.B. & Ames, B.N. Oxidative decay of DNA. J. Biol. Chem. 272, 19633–19636 (1997).

    Article  CAS  Google Scholar 

  7. Macip, S. et al. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol. 23, 8576–8585 (2003).

    Article  CAS  Google Scholar 

  8. Polyak, K., Xia, Y., Zweier, J.L., Kinzler, K.W. & Vogelstein, B. A model for p53-induced apoptosis. Nature 389, 300–305 (1997).

    Article  CAS  Google Scholar 

  9. Tan, M. et al. Transcriptional activation of the human glutathione peroxidase promoter by p53. J. Biol. Chem. 274, 12061–12066 (1999).

    Article  CAS  Google Scholar 

  10. Hussain, S.P. et al. p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res. 64, 2350–2356 (2004).

    Article  CAS  Google Scholar 

  11. Yoon, K.A., Nakamura, Y. & Arakawa, H. Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J. Hum. Genet. 49, 134–140 (2004).

    Article  CAS  Google Scholar 

  12. Budanov, A.V., Sablina, A.A., Feinstein, E., Koonin, E.V. & Chumakov, P.M. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304, 596–600 (2004).

    Article  CAS  Google Scholar 

  13. Agarwal, M.L., Agarwal, A., Taylor, W.R. & Stark, G.R. p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc. Natl. Acad. Sci. USA 92, 8493–8497 (1995).

    Article  CAS  Google Scholar 

  14. Ossovskaya, V.S. et al. Use of genetic suppressor elements to dissect distinct biological effects of separate p53 domains. Proc. Natl. Acad. Sci. USA 93, 10309–10314 (1996).

    Article  CAS  Google Scholar 

  15. Florenes, V.A. et al. MDM2 gene amplification and transcript levels in human sarcomas: relationship to TP53 gene status. J. Natl. Cancer Inst. 86, 1297–1302 (1994).

    Article  CAS  Google Scholar 

  16. Velasco-Miguel, S. et al. PA26, a novel target for the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene 18, 127–137 (1999).

    Article  CAS  Google Scholar 

  17. Lin, J., Chen, J., Elenbaas, B. & Levine, A.J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8, 1235–1246 (1994).

    Article  CAS  Google Scholar 

  18. Osovskaia, V.S. et al. Effect of on various cell lines of p53 cDNA, expressed under the control of an exogenous homologous promotor. Mol Biol (Mosk) 29, 61–70 (1995).

    CAS  Google Scholar 

  19. Kovar, H. et al. Characterization of distinct consecutive phases in non-genotoxic p53-induced apoptosis of Ewing tumor cells and the rate-limiting role of caspase 8. Oncogene 19, 4096–4107 (2000).

    Article  CAS  Google Scholar 

  20. King, M.P. & Attardi, G. Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA. Cell 52, 811–819 (1988).

    Article  CAS  Google Scholar 

  21. Griffiths, S.D. et al. Absence of p53 permits propagation of mutant cells following genotoxic damage. Oncogene 14, 523–531 (1997).

    Article  CAS  Google Scholar 

  22. Havre, P.A., Yuan, J., Hedrick, L., Cho, K.R. & Glazer, P.M. p53 inactivation by HPV16 E6 results in increased mutagenesis in human cells. Cancer Res. 55, 4420–4424 (1995).

    CAS  PubMed  Google Scholar 

  23. Bishop, A.J. et al. Atm-, p53-, and Gadd45a-deficient mice show an increased frequency of homologous recombination at different stages during development. Cancer Res. 63, 5335–5343 (2003).

    CAS  PubMed  Google Scholar 

  24. Knaap, A.G. & Simons, J.W. A mutational assay system for L5178Y mouse lymphoma cells, using hypoxanthine-guanine-phosphoribosyl-transferase (HGPRT)-deficiency as marker. The occurrence of a long expression time for mutations induced by X-rays and EMS. Mutat. Res. 30, 97–110 (1975).

    Article  CAS  Google Scholar 

  25. Donehower, L.A. et al. Effects of genetic background on tumorigenesis in p53-deficient mice. Mol. Carcinog. 14, 16–22 (1995).

    Article  CAS  Google Scholar 

  26. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

  27. Wahl, G.M., Linke, S.P., Paulson, T.G. & Huang, L.C. Maintaining genetic stability through TP53 mediated checkpoint control. Cancer Surv. 29, 183–219 (1997).

    CAS  PubMed  Google Scholar 

  28. Fukasawa, K., Wiener, F., Vande Woude, G.F. & Mai, S. Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene 15, 1295–1302 (1997).

    Article  CAS  Google Scholar 

  29. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    Article  CAS  Google Scholar 

  30. Zurer, I. et al. The role of p53 in base excision repair following genotoxic stress. Carcinogenesis 25, 11–19 (2004).

    Article  CAS  Google Scholar 

  31. Seo, Y.R. & Jung, H.J. The potential roles of p53 tumor suppressor in nucleotide excision repair (NER) and base excision repair (BER). Exp. Mol. Med. 36, 505–509 (2004).

    Article  CAS  Google Scholar 

  32. Achanta, G. & Huang, P. Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents. Cancer Res. 64, 6233–6239 (2004).

    Article  CAS  Google Scholar 

  33. Deng, C., Zhang, P., Harper, J.W., Elledge, S.J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    Article  CAS  Google Scholar 

  34. Villunger, A. et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302, 1036–1038 (2003).

    Article  CAS  Google Scholar 

  35. Jeffers, J.R. et al. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4, 321–328 (2003).

    Article  CAS  Google Scholar 

  36. Kim, H.J. et al. Modulation of redox-sensitive transcription factors by calorie restriction during aging. Mech. Ageing Dev. 123, 1589–1595 (2002).

    Article  CAS  Google Scholar 

  37. Sohal, R.S., Agarwal, S., Candas, M., Forster, M.J. & Lal, H. Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech. Ageing Dev. 76, 215–224 (1994).

    Article  CAS  Google Scholar 

  38. Hursting, S.D., Perkins, S.N. & Phang, J.M. Calorie restriction delays spontaneous tumorigenesis in p53-knockout transgenic mice. Proc. Natl. Acad. Sci. USA 91, 7036–7040 (1994).

    Article  CAS  Google Scholar 

  39. Hursting, S.D. et al. Diet-gene interactions in p53-deficient mice: insulin-like growth factor-1 as a mechanistic target. J. Nutr. 134, 2482S–2486S (2004).

    Article  CAS  Google Scholar 

  40. Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S. & Vande Woude, G.F. Abnormal centrosome amplification in the absence of p53. Science 271, 1744–1747 (1996).

    Article  CAS  Google Scholar 

  41. Agapova, L.S. et al. Chromosome changes caused by alterations of p53 expression. Mutat. Res. 354, 129–138 (1996).

    Article  Google Scholar 

  42. Reliene, R., Fischer, E. & Schiestl, R.H. Effect of N-acetyl cysteine on oxidative DNA damage and the frequency of DNA deletions in atm-deficient mice. Cancer Res. 64, 5148–5153 (2004).

    Article  CAS  Google Scholar 

  43. Xu, Y. et al. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev. 10, 2411–2422 (1996).

    Article  CAS  Google Scholar 

  44. Schubert, R. et al. Cancer chemoprevention by the antioxidant tempol in Atm-deficient mice. Hum. Mol. Genet. 13, 1793–1802 (2004).

    Article  CAS  Google Scholar 

  45. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    Article  CAS  Google Scholar 

  46. Li, F.P. et al. Recommendations on predictive testing for germ line p53 mutations among cancer-prone individuals. J. Natl. Cancer Inst. 84, 1156–1160 (1992).

    Article  CAS  Google Scholar 

  47. Bond, G.L. et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119, 591–602 (2004).

    Article  CAS  Google Scholar 

  48. Neumann, C.A. et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424, 561–565 (2003).

    Article  CAS  Google Scholar 

  49. Balansky, R., Izzotti, A., Scatolini, L., D'Agostini, F. & De Flora, S. Induction by carcinogens and chemoprevention by N-acetylcysteine of adducts to mitochondrial DNA in rat organs. Cancer Res. 56, 1642–1647 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Kopnin for support of in vivo experiments, and G. Stark, A. Levine and A. Gudkov for criticism during preparation of the manuscript. The work was supported by US National Institutes of Health grants R01 CA10490 and R01 AG025278 to P.M.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M Chumakov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Characterization of RKO cells with inhibited expression of p53. (PDF 88 kb)

Supplementary Fig. 2

Effect of deficiency in p53 on intracellular ROS level. (PDF 17 kb)

Supplementary Fig. 3

Effect of overexpressed p53-regulated genes on intracellular ROS level. (PDF 59 kb)

Supplementary Fig. 4

Effect of p53 expression on cell cycle and apoptosis in H1299 cells. (PDF 51 kb)

Supplementary Fig. 5

Effect of p53 overexpression on intracellular ROS levels in control and mitochondrial DNA-deficient cells (p0). (PDF 73 kb)

Supplementary Fig. 6

Inhibition of p53 in RKO cells affects the response to moderate and high levels of H2O2. (PDF 204 kb)

Supplementary Fig. 7

Effect of p53 deficiency on DNA oxidation level and mutation rate and xenograft growth of A549 cells with knockdown of p53 or Hi95. (PDF 34 kb)

Supplementary Fig. 8

N-acetylcysteine does not affect growth of p53-positive and p53-negative RKO cells in vitro. (PDF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sablina, A., Budanov, A., Ilyinskaya, G. et al. The antioxidant function of the p53 tumor suppressor. Nat Med 11, 1306–1313 (2005). https://doi.org/10.1038/nm1320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1320

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing