Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

T cells targeted against a single minor histocompatibility antigen can cure solid tumors

Abstract

T cells responsive to minor histocompatibility (H) antigens are extremely effective in curing leukemia but it remains unknown whether they can eradicate solid tumors. We report that injection of CD8+ T cells primed against the immunodominant H7a minor H antigen can cure established melanomas in mice. Tumor rejection was initiated by preferential extravasation at the tumor site of interferon (IFN)-γ–producing H7a-specific T cells. Intratumoral release of IFN-γ had two crucial effects: inhibition of tumor angiogenesis and upregulation of major histocompatibility complex (MHC) class I expression on tumor cells. Despite ubiquitous expression of H7a, dissemination of a few H7a-specific T cells in extralymphoid organs caused neither graft-versus-host disease (GVHD) nor vitiligo because host nonhematopoietic cells were protected by their low expression of MHC class I. Our preclinical model yields unique insights into how minor H antigen–based immunotherapy could be used to treat human solid tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: H7a-specific CD8+ T lymphocytes can cure melanoma.
Figure 2: The antitumor efficacy of adoptively transferred T cells is regulated by expression of target antigen on tumor cells.
Figure 3: Preferential T-cell accumulation in the tumor is antigen independent but degranulation is antigen dependent.
Figure 4: Characterization of TILs and tumor blood vessels.
Figure 5: TIL-derived IFN-γ upregulates MHC class I expression on tumor cells and inhibits tumor angiogenesis.
Figure 6: Killing of target cells by H7a-specific effectors is TCR dependent and correlates with MHC class I expression.

Similar content being viewed by others

References

  1. Finn, O.J. Cancer vaccines: between the idea and the reality. Nat. Rev. Immunol. 3, 630–641 (2003).

    Article  CAS  Google Scholar 

  2. Rosenberg, S.A., Yang, J.C. & Restifo, N.P. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10, 909–915 (2004).

    Article  CAS  Google Scholar 

  3. Bleakley, M. & Riddell, S.R. Molecules and mechanisms of the graft-versus-leukaemia effect. Nat. Rev. Cancer 4, 371–380 (2004).

    Article  CAS  Google Scholar 

  4. Perreault, C. & Brochu, S. Adoptive cancer immunotherapy: discovering the best targets. J. Mol. Med. 80, 212–218 (2002).

    Article  CAS  Google Scholar 

  5. Molldrem, J.J. et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat. Med. 6, 1018–1023 (2000).

    Article  CAS  Google Scholar 

  6. Fontaine, P. et al. Adoptive transfer of T lymphocytes targeted to a single immunodominant minor histocompatibility antigen eradicates leukemia cells without causing graft-versus-host disease. Nat. Med. 7, 789–794 (2001).

    Article  CAS  Google Scholar 

  7. Meunier, M.C., Roy-Proulx, G., Labrecque, N. & Perreault, C. Tissue distribution of target antigen has a decisive influence on the outcome of adoptive cancer immunotherapy. Blood 101, 766–770 (2003).

    Article  CAS  Google Scholar 

  8. Bevan, M.J. Helping the CD8+ T-cell response. Nat. Rev. Immunol. 4, 595–602 (2004).

    Article  CAS  Google Scholar 

  9. Pion, S. et al. On the mechanisms of immunodominance in cytotoxic T lymphocyte responses to minor histocompatibility antigens. Eur. J. Immunol. 27, 421–430 (1997).

    Article  CAS  Google Scholar 

  10. Roy-Proulx, G., Meunier, M.C., Lanteigne, A.M., Brochu, S. & Perreault, C. Immunodomination results from functional differences between competing CTL. Eur. J. Immunol. 31, 2284–2292 (2001).

    Article  CAS  Google Scholar 

  11. Eden, P.A. et al. Biochemical and immunogenetic analysis of an immunodominant peptide (B6dom1) encoded by the classical H7 minor histocompatibility locus. J. Immunol. 162, 4502–4510 (1999).

    CAS  PubMed  Google Scholar 

  12. Rubio, V. et al. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat. Med. 9, 1377–1382 (2003).

    Article  CAS  Google Scholar 

  13. Harrington, L.E., Galvan, M., Baum, L.G., Altman, J.D. & Ahmed, R. Differentiating between memory and effector CD8 T cells by altered expression of cell surface O-glycans. J. Exp. Med. 191, 1241–1246 (2000).

    Article  CAS  Google Scholar 

  14. von Andrian, U.H. & Mackay, C.R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med. 343, 1020–1034 (2000).

    Article  CAS  Google Scholar 

  15. Issekutz, A.C. & Issekutz, T.B. The role of E-selectin, P-selectin, and very late activation antigen-4 in T lymphocyte migration to dermal inflammation. J. Immunol. 168, 1934–1939 (2002).

    Article  CAS  Google Scholar 

  16. Thatte, J., Dabak, V., Williams, M.B., Braciale, T.J. & Ley, K. LFA-1 is required for retention of effector CD8 T cells in mouse lungs. Blood 101, 4916–4922 (2003).

    Article  CAS  Google Scholar 

  17. Dunn, G.P., Old, L.J. & Schreiber, R.D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137–148 (2004).

    Article  CAS  Google Scholar 

  18. Spiotto, M.T., Rowley, D.A. & Schreiber, H. Bystander elimination of antigen loss variants in established tumors. Nat. Med. 10, 294–298 (2004).

    Article  CAS  Google Scholar 

  19. Griem, P. et al. Uneven tissue distribution of minor histocompatibility proteins versus peptides is caused by MHC expression. Cell 65, 633–640 (1991).

    Article  CAS  Google Scholar 

  20. Schroder, K., Hertzog, P.J., Ravasi, T. & Hume, D.A. Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189 (2004).

    Article  CAS  Google Scholar 

  21. Schüler, T. & Blankenstein, T. Cutting edge: CD8+ effector T cells reject tumors by direct antigen recognition but indirect action on host cells. J. Immunol. 170, 4427–4431 (2003).

    Article  Google Scholar 

  22. Ogasawara, K. et al. NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity 20, 757–767 (2004).

    Article  CAS  Google Scholar 

  23. Wang, T. et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat. Med. 10, 48–54 (2004).

    Article  Google Scholar 

  24. Butcher, E.C. & Picker, L.J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  Google Scholar 

  25. Siegelman, M.H., Stanescu, D. & Estess, P. The CD44-initiated pathway of T-cell extravasation uses VLA-4 but not LFA-1 for firm adhesion. J. Clin. Invest. 105, 683–691 (2000).

    Article  CAS  Google Scholar 

  26. Nandi, A., Estess, P. & Siegelman, M. Bimolecular complex between rolling and firm adhesion receptors required for cell arrest; CD44 association with VLA-4 in T cell extravasation. Immunity 20, 455–465 (2004).

    Article  CAS  Google Scholar 

  27. Kuzu, I., Bicknell, R., Fletcher, C.D. & Gatter, K.C. Expression of adhesion molecules on the endothelium of normal tissue vessels and vascular tumors. Lab. Invest. 69, 322–328 (1993).

    CAS  PubMed  Google Scholar 

  28. Dienst, A. et al. Specific occlusion of murine and human tumor vasculature by VCAM-1-targeted recombinant fusion proteins. J. Natl. Cancer Inst. 97, 733–747 (2005).

    Article  CAS  Google Scholar 

  29. Byrne, G.J. et al. Serum soluble vascular cell adhesion molecule-1: role as a surrogate marker of angiogenesis. J. Natl. Cancer Inst. 92, 1329–1336 (2000).

    Article  CAS  Google Scholar 

  30. Amatschek, S. et al. Tissue-wide expression profiling using cDNA subtraction and microarrays to identify tumor-specific genes. Cancer Res. 64, 844–856 (2004).

    Article  CAS  Google Scholar 

  31. Gervois, N., Guilloux, Y., Diez, E. & Jotereau, F. Suboptimal activation of melanoma infiltrating lymphocytes (TIL) due to low avidity of TCR/MHC-tumor peptide interactions. J. Exp. Med. 183, 2403–2407 (1996).

    Article  CAS  Google Scholar 

  32. Hernandez, J., Lee, P.P., Davis, M.M. & Sherman, L.A. The use of HLA A2.1/p53 peptide tetramers to visualize the impact of self tolerance on the TCR repertoire. J. Immunol. 164, 596–602 (2000).

    Article  CAS  Google Scholar 

  33. Yoshimura, Y. et al. Duration of alloantigen presentation and avidity of T cell antigen recognition correlate with immunodominance of CTL response to minor histocompatibility antigens. J. Immunol. 172, 6666–6674 (2004).

    Article  CAS  Google Scholar 

  34. Li, Y. et al. Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat. Biotechnol. 23, 349–354 (2005).

    Article  CAS  Google Scholar 

  35. Morgan, R.A. et al. High efficiency TCR gene transfer into primary human lymphocytes affords avid recognition of melanoma tumor antigen glycoprotein 100 and does not alter the recognition of autologous melanoma antigens. J. Immunol. 171, 3287–3295 (2003).

    Article  CAS  Google Scholar 

  36. Korngold, R., Leighton, C., Mobraaten, L.E. & Berger, M.A. Inter-strain graft-vs.-host disease T-cell responses to immunodominant minor histocompatibility antigens. Biol. Blood Marrow Transplant. 3, 57–64 (1997).

    CAS  PubMed  Google Scholar 

  37. Klein, C.A. et al. The hematopoietic system-specific minor histocompatibility antigen HA-1 shows aberrant expression in epithelial cancer cells. J. Exp. Med. 196, 359–368 (2002).

    Article  CAS  Google Scholar 

  38. Spierings, E., Wieles, B. & Goulmy, E. Minor histocompatibility antigens - big in tumour therapy. Trends Immunol. 25, 56–60 (2004).

    Article  CAS  Google Scholar 

  39. de Bueger, M., Bakker, A., Van Rood, J.J., van der Woude, F. & Goulmy, E. Tissue distribution of human minor histocompatibility antigens. Ubiquitous versus restricted tissue distribution indicates heterogeneity among human cytotoxic T lymphocyte-defined non-MHC antigens. J. Immunol. 149, 1788–1794 (1992).

    CAS  PubMed  Google Scholar 

  40. Liu, L. et al. Visualization and quantification of T cell-mediated cytotoxicity using cell-permeable fluorogenic caspase substrates. Nat. Med. 8, 185–189 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant 014271 (to C.P.) from the National Cancer Institute of Canada. M.-C.M. is supported by a training grant from the National Cancer Institute of Canada. J.-S.D. is supported by a training grant from the Fonds de la Recherche en Santé du Québec. C.P. holds a Canada Research Chair in Immunobiology. We thank J.A. Kashul for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Perreault.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Experimental model. (PDF 93 kb)

Supplementary Table 1

H7a genotype of mice and tumors used in this work. (PDF 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meunier, MC., Delisle, JS., Bergeron, J. et al. T cells targeted against a single minor histocompatibility antigen can cure solid tumors. Nat Med 11, 1222–1229 (2005). https://doi.org/10.1038/nm1311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing