Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells


Intratumoral implantation of murine cells modified to produce retroviral vectors containing the herpes simplex virus-thymidine kinase (HSV-TK) gene induces regression of experimental brain tumors in rodents after ganciclovir (GCV) administration. We evaluated this approach in 15 patients with progressive growth of recurrent malignant brain tumors. Antitumor activity was detected in five of the smaller tumors (1.4 ± 0.5 ml). In situ hybridization for HSV-TK demonstrated survival of vector-producing cells (VPCs) at 7 days but indicated limited gene transfer to tumors, suggesting that indirect, “bystander,” mechanisms provide local antitumor activity in human tumors. However, the response of only very small tumors in which a high density of vector-producing cells had been placed suggests that techniques to improve delivery and distribution of the therapeutic gene will need to be developed if clinical utility is to be achieved with this approach.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Barba, D., Hardin, J., Ray, J. & Gage, F.H. Thymidine kinase-mediated killing of rat brain tumors. J. Neurosurg. 79, 729–735 (1993).

    CAS  Article  Google Scholar 

  2. Culver, K.W. et al. In vivo gene transfer with retroviral vector-producing cells for treatment of experimental brain tumors. Science 256, 1550–1552 (1992).

    CAS  Article  Google Scholar 

  3. Ezzeddine, Z.D. et al. Selective killing of glioma Cells in culture and in vivo by retrovirus transfer of the herpes simplex virus thymidine kinase gene. New Biol. 3, 608–614 (1991).

    CAS  Google Scholar 

  4. Caruso, M. et al. Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc. Natl. Acad. Sci. USA 90, 7024–7028 (1993).

    CAS  Article  Google Scholar 

  5. Moolten, F.L. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: Paradigm for a prospective cancer control strategy. Cancer Res. 46, 5276–5281 (1986).

    CAS  Google Scholar 

  6. Ram, Z., Culver, K.W., Walbridge, S., Blaese, R.M. & Oldfield, E.H. In situ retroviral-mediated gene transfer for the treatment of brain tumors in rats. Cancer Res. 53, 83–88 (1993).

    CAS  Google Scholar 

  7. Mann, R., Mulligan, R.C. & Baltimore, D. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33, 153–159 (1983).

    CAS  Article  Google Scholar 

  8. Short, M.P. et al. Gene delivery to glioma cells in rat brain by grafting of a retrovirus packaging cell line. J. Neurosci. Res. 27, 427–439 (1990).

    CAS  Article  Google Scholar 

  9. Burger, P. & Scheithauer, B. Tumors of the central nervous system. in Atlas of Tumor Pathology, Third Series, Fascicle 10, p. 59 (Armed Forces Institute of Pathology, Washington, D. C., 1994).

    Google Scholar 

  10. Burger, P., Scheithauer, B. & Vogel, F. Surgical Pathology of the Nervous System and Its Coverings. (Churchill Livingstone, New York, 1991).

    Google Scholar 

  11. Bi, W.L., Parysek, L.M., Warnick, R. & Stambrook, P.J. In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV Tk retroviral gene therapy. Hum. Gene Ther. 4, 725–731 (1993).

    CAS  Article  Google Scholar 

  12. Ishii, H. et al. Mechanism of “bystander effect” killing in the herpes simplex thymidine kinase gene therapy model of cancer. Gene Ther. 4, 244–251 (1997).

    Article  Google Scholar 

  13. Kato, K., Yoshida, J., Mizuno, M., Sugita, K. & Emi, N. Retroviral transfer of herpes simplex thymidine kinase into glioma Cells targeting of gancyclovir cytotoxic effect. Neurol. Med. Chir. (Tokyo) 34, 339–344 (1994).

    CAS  Article  Google Scholar 

  14. Wu, J., et al. Bystander tumoricidal effect in the treatment of experimental brain tumors. Neurosurgery 35, 1094–1102 (1994).

    CAS  Article  Google Scholar 

  15. Freeman, S.M., et al. The bystander effect: Tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 53, 5274–5283 (1993).

    CAS  Google Scholar 

  16. Denekamp, J. Angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br. J. Rad. 66, 181–196 (1993).

    CAS  Article  Google Scholar 

  17. Ram, Z., et al. The effect on tumoral vascufature and growth of thymidine kinase-transduced, ganciclovir-treated 9L gliomas in rats. J. Neurosurg. 81, 256–260 (1994).

    CAS  Article  Google Scholar 

  18. Barba, D., Hardin, J., Sadelain, M. & Gage, F.H. Development of antitumor immunity following thymidine kinase-mediated killing of experimental brain tumors. Proc. Natl. Acad. Sci. USA 91, 4348–4352 (1994).

    CAS  Article  Google Scholar 

  19. Moolten, F.L. & Wells, J.M. Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J. Natl. Cancer Inst. 82, 297–300 (1990).

    CAS  Article  Google Scholar 

  20. Lyons, R. et al. An improved vector encoding the herpes simplex virus thymidine kinase gene increases antitumor efficacy in vivo. Cancer Gene Ther. 2, 273–280 (1995).

    CAS  PubMed  Google Scholar 

  21. Boviatsis, E. et al. Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidine kinase gene. Cancer Res. 15, 5745–5751 (1994).

    Google Scholar 

  22. Perez-Cruet, M., et al. Adenovirus-mediated gene therapy of experimental gliomas. J. Neurosci. Res. 39, 506–511 (1994).

    CAS  Article  Google Scholar 

  23. Chen, S.H., Shine, H.D., Goodman, J.C., Grossman, R.G. & Woo, S.L. Gene therapy for brain tumors: Regression of experimental gliomas by adenovirus-mediated gene transfer in vivo. Proc. Natl. Acad. Sci. USA 91, 3054–3057 (1994).

    CAS  Article  Google Scholar 

  24. Oldfield, E.H., Ram, Z., Culver, K.W., DeVroom, H.L. & Blaese, R.M. Gene therapy for the treatment of brain tumors using intra-tumoral transduction with the thymidine kinase gene and intravenous ganciclovir. Hum. Gene Ther. 4, 39–69 (1993).

    CAS  Article  Google Scholar 

  25. Haapala, D.K., Robey, W.G., Oroszlan, S.D. & Tsai, W.P. Isolation from cats of an endogenous type C virus with a novel envelope glycoprotein. J. Virol. 53, 827–833 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cairncross, G., et al. Chemotherapy for anaplastic oligodendroglioma. J. Clin. Oncol. 12, 2013–2021 (1994).

    CAS  Article  Google Scholar 

  27. Macdonald, D., Cascino, T., Schold, S. & Cairncross, J. Response criteria for phase II studies of supratentorial malignant glioma. J. Clin. Oncol. 8, 1277–1280 (1990).

    CAS  Article  Google Scholar 

  28. Pantaleo, G. et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362, 355–358 (1993).

    CAS  Article  Google Scholar 

  29. Hsu, S.M., Raine, L. & Fanger, H. A comparative study of the PAP method and avidin-biotin-complex method for studying polypeptide hormones with radioimmunoassay antibodies. Am. J. Clin. Pathol. 75, 734–738 (1981).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ram, Z., Culver, K., Oshiro, E. et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med 3, 1354–1361 (1997).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing