Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species

Abstract

We previously described a method for isolating murine hematopoietic stem cells capable of reconstituting lethally irradiated recipients, which depends solely on dual-wavelength flow cytometric analysis of murine bone marrow cells stained with the fluorescent DNA-binding dye Hoechst 33342. This method, which appears to rely on the differential ability of stem cells to efflux the Hoechst dye, defines an extremely small and homogeneous population of cells (termed SP cells). We show here that dual-wavelength analysis of Hoechst dye-stained human, rhesus and miniature swine bone marrow cells reveals a small, distinct population of cells that efflux the dye in a manner identical to murine SP cells. Like the murine SP cells, both human and rhesus SP cells are primarily CD34-negative and lineage marker-negative. In vitro culture studies demonstrated that rhesus SP cells are highly enriched for long-term culture-initiating cells (LTC-ICs), an indicator of primitive hematopoietic cells, and have the capacity for differentiation into T cells. Although rhesus SP cells do not initially possess any hematopoietic colony-forming capability, they acquire the ability to form colonies after long-term culture on bone marrow stroma, coincident with their conversion to a CD34-positive phenotype. These studies suggest the existence of a hitherto unrecognized population of hematopoietic stem cells that lack the CD34 surface marker classically associated with primitive hematopoietic cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Metcalf, D. Haemopoietic Cells p. 550 (North-Holland, Amsterdam, 1971).

    Google Scholar 

  2. Uchida, N. & Weissman, I.L. Searching for hematopoietic stem Cells: Evidence that Thy-1.1lo Lin- Sca-1+ Cells are the only stem Cells in C57BL/Ka-Thy-1.1 bone marrow. J. Exp. Med. 175, 175–184 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem Cells. Science 241, 58–62 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Mulder, A., Bauman, J., Visser, J., Boersma, W. & van, den Engh, G.I. Separation of spleen colony-forming units and prothymocytes by use of a monoclonal antibody detecting an H-2K determinant. Cell. Immunol. 88, 401–410 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Okada, S. et al. In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic Cells. Blood 80, 3044–3050 (1992).

    CAS  PubMed  Google Scholar 

  6. Katayama, N. et al. Stage-specific expression of c-kit protein by murine hematopoietic progenitors. Blood 82, 2353–2360 (1993).

    CAS  PubMed  Google Scholar 

  7. Sutherland, H.J., Eaves, C.J., Eaves, A.C., Dragowska, W. & Lansdorp, P.M. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74, 1563–1570 (1989).

    CAS  PubMed  Google Scholar 

  8. Sutherland, H.J., Lansdorp, P.M., Henkelman, D.H., Eaves, A.C. & Eaves, C.J. Functional characterization of individual human hematopoietic stem Cells cultured at limiting dilution on supportive marrow stromal layers. Proc. Natl. Acad. Sci. USA 87, 3584–3588 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baum, C., Weissman, I., Tsukamoto, A., Buckle, A. & Peault, B. Isolation of a candidate human hematopoietic stem-cell population. Proc. Natl. Acad. Sci. USA 89, 2804–2808 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang, S. & Terstappen, L. Lymphoid and myeloid differentiation of single human CD34+, HLA-DR+, CD38 hematopoietic stem Cells. Blood 83, 1515–1526 (1994).

    CAS  PubMed  Google Scholar 

  11. Berardi, A., Wang, A., Levine, J., Lopez, P. & Scadden, D. Functional isolation and characterization of human hematopoietic stem Cells. Science 267, 104–108 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Petzer, A.L., Hogge, D.E., Landsdorp, P.M., Reid, D.S. & Eaves, C.J. Self-renewal of primitive human hematopoietic Cells (long-term-culture-initiating Cells) in vitro and their expansion in defined medium. Proc. Natl. Acad. Sci. USA 93, 1470–1474 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Larochelle, A. et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: Implications for gene therapy. Nature Med. 2, 1329–1337 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Hao, Q., Thiemann, F., Petersen, D., Smogorzewska, E. & Crooks, G. Extended long-term culture reveals a highly quiescent and primitive human hematopoietic progenitor population. Blood 88, 3306–3313 (1996).

    CAS  PubMed  Google Scholar 

  15. Goodell, M., Brose, K., Paradis, G., Conner, A. & Mulligan, R. Isolation and functional properties of murine hematopoietic stem Cells that are replicating in vivo. J. Exp. Med. 183, 1797–1806 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Krause, D. et al. Characterization of murine CD34, a marker for hematopoietic progenitor and stem Cells. Blood 84, 691–701 (1994).

    CAS  PubMed  Google Scholar 

  17. Morel, F., Szilvassy, S., Travis, M., Chen, B. & Galy, A. Primitive hematopoietic Cells in murine bone marrow express the CD34 antigen. Blood 88, 3774–3784 (1996).

    CAS  PubMed  Google Scholar 

  18. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem Cell. Science 273, 242–245 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Jones, R. et al. Characterization of mouse lymphohematopoietic stem Cells lacking spleen colony-forming activity. Blood 88, 487–491 (1996).

    CAS  PubMed  Google Scholar 

  20. Broxmeyer, H. et al. Human umbilical cord blood: A clinically useful source of transplantable hematopoietic stem/progenitor Cells. Int. J. Cell Cloning 8 (Suppl. 1), 76–89; discussion 89–91 (1990).

    Article  PubMed  Google Scholar 

  21. Olweus, J., Lund-Johansen, F., Terstappen, L.W.M.M. Expression of Cell surface markers during differentiation of CD34+, CD38−/lo fetal and adult bone marrow Cells. Immunomethods 5, 179–188 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Barcena, A. et al. Phenotypic and functional analysis of T-Cell precursors in the human fetal liver and thymus: CD7 expression in the early stages of T-and myeloid-Cell development. Blood 82, 3401–3414 (1993).

    CAS  PubMed  Google Scholar 

  23. Rosenzweig, M. et al. In vitro T lymphopoiesis of human and rhesus CD34+ progenitor Cells. Blood 87, 4040–4048 (1996).

    CAS  PubMed  Google Scholar 

  24. Zanjani, E.D., Flake, A.W., Rice, H., Hedrick, M., Tavassoli, M. Long-term repopulating ability of xenogeneic transplanted human fetal liver hematopoietic stem Cells in sheep. J. Clin. Invest. 93, 1051–1055 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dunbar, C. Gene transfer to hematopoietic stem Cells: Implications for gene therapy of human disease. Annu. Rev. Med. 47, 11–20 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Berenson, R. et al. Engraftment after infusion of CD34+ marrow Cells in patients with breast cancer or neuroblastoma. Blood 77, 1717–1722 (1991).

    CAS  PubMed  Google Scholar 

  27. Civin, C. et al. Highly purified CD34-positive Cells reconstitute hematopoiesis. J Clin Oncol. 14, 2224–2233 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Kohn, D. et al. Engraftment of gene-modified umbilical cord blood Cells in neonates withadenosine deaminase deficiency. Nature Med. 1, 1017–1023 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Guide for the Care and Use of Laboratory Animals. DHHS Publication No. [NIH] 85–23 (US Dept. of Health and Human Services, Bethesda, MD, 1985).

  30. Kawai, T., Wong, J., MacLean, J., Cosimi, A.B., Wee, S. Characterization of a monoclonal antibody (6G12) recognizing the cynomolgus monkey CD3 antigen. Transplant. Proc. 26, 1845–1846 (1994).

    CAS  PubMed  Google Scholar 

  31. Sutherland, D.R. & Eaves, C.J. Culture of Hematopoietic Cells. pp. 139–162 (Wiley-Liss, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodell, M., Rosenzweig, M., Kim, H. et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3, 1337–1345 (1997). https://doi.org/10.1038/nm1297-1337

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1297-1337

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing