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Rats go with the (urine) flow 
A new study describes the correction of a rat model for inherited diabetes insipidus by gene therapy in the central 

nervous system (pages 1402-1404). 

THE DISORDER DIABETES insipidus may seem 
an unlikely context in which ideas 

about possible gene therapy strategies for 
brain disorders may be first tried. However, 
the Brattleboro strain of rats-which has 
inherited diabetes insipidus1-has been 
used repeatedly in neuroendocrinology as 
a unique resource, and, once again, its mer­
its as an experimental model have been 
extended. On page 1402 of this issue, Ged­
des et al.2 describe their studies to test the 
usefulness of adenovirus-based vectors for 
the long-term correction of a defect in the 
central nervous system (CNS). 

By way of background, the defect in Brat­
tleboro rats has been characterized as a 
recessive hypothalamic diabetes insipidus, 
arising from the loss of a single base-pair 
in the gene for the precursor protein (pre­
pro-A VP) that encodes arginine vasopressin 
(A VP) and its homologous carrier protein, 
neurophysin-11 (ref. 3). These rats show 
copious urine production and concomitant 
water intake, due to a lack of AVP. But, sur­
prisingly, the pre-pro-A VP gene is normal in 
exon 1 (which encodes arginine vaso­
pressin). The deletion occurs in the mid­
dle of exon 2, within the sequence of neu­
rophysin-II. The resulting frame shift leads 
to an extended open reading frame which 
continues through the normal stop codon, 
creating a poly-lysine tail. This mutant pre­
pro-AVP cannot be normally processed, and 
accumulates in the endoplasmic reticulum, 
preventing the production, packaging and 
eventual secretion of AVP (ref. 4). 

The direct relevance of the Brattleboro 
model for human diabetes insipidus is lim­
ited. Inherited forms of the human disease 
are caused by several identified genes 
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including, predominantly, the A VP V2-
receptor, which is expressed in the kidney'. 
However, although rare, an inherited 
human diabetes insipidus has arisen from a 
neurohypophyseal origin6 • The true impor­
tance of the work by Geddes et al. is in test­
ing crucial features of a gene therapy strat­
egy for the brain: the suitability of the 
vector; the selectivity of transgene expres­
sion; and the persistence of therapeutic effi­
cacy. The Brattleboro model is ideal for this, 
because the aim herein is to reverse a loss­
of-function single gene change in the 
brain-a much simpler circumstance than 
in complex idiopathic CNS disorders such 
as Alzheimer's disease. Moreover, the con­
sequences can be readily measured non­
invasively (for example, by urine produc­
tion and thirst). 

Geddes et al. injected the adenoviral 
expression vector, encoding a synthetic 
gene for the open reading frame of rat pre­
pro-A VP, into the supraoptic nucleus in the 
hypothalamus of the rat brain. One grati­
fying (but as-yet unexplained) aspect is that, 
although the transgene could be expressed 
as a messenger RNA when injected into a 
control brain region, it was not processed to 
functional AVP peptide. This unexpected 
advantage may arise from a self-selection 
process. Inappropriate cell types could, 
perhaps, lack the contextual cues in vivo to 
support biosynthesis of an endocrine signal. 
But whether this will prove to be true for 
other types of transgenes in other contexts 
remains to be seen. 

A single injection of the gene therapy 

vector led to a substantial (25-45 percent) 
recovery of normal antidiuretic functions, 
which was long lasting (up to four months 
after treatment) and, apparently, without 
side-effects. The question of possible side­
effects will, however, be a crucial issue for 
further investigation. Adenovirus vectors 
used for transducing transgenes into the 
brain have been linked to induction of cell 
death (reviewed in ref. 7). Thus, the loss 
of cells from the regions of the CNS that 
express the adenovirus-encoded gene will 
need to be carefully assessed. Nevertheless, 
the results of Geddes et al. are an optimistic 
milestone in the development of CNS gene 
therapy. 
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