Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

N–Methyl–D–aspartate antagonists limit aminoglycoside antibiotic–induced hearing loss

Abstract

The use of aminoglycoside antibiotics is limited by ototoxicity that can produce permanent hearing loss. We report that concurrent administration of N–methyl–D–aspartate (NMDA) antagonists markedly attenuates both the hearing loss and destruction of cochlear hair cells in guinea pigs treated with aminoglycoside antibiotics. These findings indicate that aminoglycoside–induced hearing loss is mediated, in part, through an excitotoxic process. The high correlation (Spearman correlation coefficient: 0.928; P < 0.01) obtained between the relative cochleotoxicities of a series of aminoglycosides in humans and the potencies of these compounds to produce a polyamine–like enhancement of [3H]dizocilpine binding to NMDA receptors is consistent with this hypothesis, and provides a simple in vitro assay that can predict this aspect of aminoglycoside–induced ototoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Begg, E.J. & Barclay, M.L. Aminoglycosides — 50 years on. Br. J. Clin. Pharmacol. 39, 597–603 (1995).

    Article  CAS  Google Scholar 

  2. Brummett, R.E., Fox, K.E., Bendrick, T.W. & Himes, D.L. Ototoxicity of tobramycin, gentamicin, amikacin and sisomicin in the guinea pig. J. Antimicrob. Chemother. 4 (Suppl. A) 73–83 (1978).

    Article  CAS  Google Scholar 

  3. Brummett, R.E. & Morrison, R.B. The incidence of aminoglycoside antibiotic-induced hearing loss. Arch. Otolaryngol Head Neck Surg. 116, 406–410 (1990).

    Article  CAS  Google Scholar 

  4. Stringer, S.P., Meyerhoff, W.L. & Wright, C.G., Otoxicity. in Otolaryngology (eds. Paparella, M.M., Shumrick, D.A., Gluckman, J.L. & Meyerhoff, W.L.) 1653–1669 (Saunders, Philadelphia, 1991).

    Google Scholar 

  5. Hodges, G.R. Aminoglycoside toxicity. in The Aminoglycoside Antibiotics: A Guide to Therapy (eds. Barnes, W.G. & Hodges, G.R.) 153–179 (CRC Press, Boca Raton, Florida, 1984).

    Google Scholar 

  6. Kiang, N.Y.S., Liberman, M.C. & Levine, R.A. Auditory nerve activity in cats ex posed to ototoxic drugs and high-intensity sounds. Ann. Otol. Rhinol. Laryngol. 85, 752–768 (1976).

    Article  CAS  Google Scholar 

  7. Schacht, J. Biochemical basis of aminoglycoside toxicity. Otolaryngol. Clin. North Am. 26, 845–856 (1993).

    CAS  PubMed  Google Scholar 

  8. Lim, D.J. Effects of noise and ototoxic drugs at the cellular level in the cochlea. Am. J. Otolaryngol. 7, 73–99 (1986).

    Article  CAS  Google Scholar 

  9. Puel, J.-L., Ladrech, R., Chabert, R., Pujol, R. & Eybalin, M. Electrophysiological evidence for the presence of NMDA receptors in the guinea pig cochlea. Hear. Res. 51, 255–264 (1991).

    Article  CAS  Google Scholar 

  10. Safieddine, S. & Eybalin, M. Co-expression of NMDA and AMPA/kainate receptor mRNAs in cochlear neurones. NeuroReport 3, 1145–1148 (1992).

    Article  CAS  Google Scholar 

  11. Usami, S., Matsubara, A., Fujita, S., Shinkawa, H. & Hayashi, M. NMDA (NMDAR1) and AMPA-type (GluR2/3) receptor subunits are expressed in the inner ear. NeuroReport 6, 1161–1164 (1995).

    Article  CAS  Google Scholar 

  12. Pullan, L.M., Stumpo, R.J., Powel, R.J., Paschetto, K.A. & Britt, M. Neomycin is an agonist at a polyamine site on the N-methyl-D-aspartate receptor. J. Neurochem. 59, 2087–2093 (1992).

    Article  CAS  Google Scholar 

  13. Choi, D.W. Excitotoxic cell death. J. Neurobiol. 23, 1261–1276 (1992).

    Article  CAS  Google Scholar 

  14. Wong, E. et al. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc. Natl. Acad. Sci. USA 83, 7104–7108 (1986).

    Article  CAS  Google Scholar 

  15. Carter, C., Lloyd, K., Zivkovic, B. & Scatton, B. Ifenprodil and SL 82 0715 as cerebral anti-ischemic agents. III. Evidence for antagonistic effects at the polyamine modulatory site within the N-methyl-D-aspartate receptor complex. J. Pharmacol. Exp. Ther. 253, 475–482 (1990).

    CAS  PubMed  Google Scholar 

  16. Oliveira, J.A.A. Methods for studying Ototoxicity. in Audiovestibular Toxicity of Drugs (ed. Oliveira, J.A.A.) 71–74 (CRC Press, Boca Raton, Florida, 1989).

    Google Scholar 

  17. Huang, J.-M., Money, M.K., Berlin, C.I. & Keats, B.J.B. Auditory phenotyping of heterozygous sound-responsive (+/dn) and deafness (dn/dn) mice. Hear. Res. 88, 61–64 (1995).

    Article  CAS  Google Scholar 

  18. Brown, A.M., McDowell, B. & Forge, A. Acoustic distortion products can be used to monitor the effects of chronic gentamicin treatment. Hear. Res. 42, 143–156 (1989).

    Article  CAS  Google Scholar 

  19. Henley, C.M. & Ryback, L.P. Ototoxicity in developing mammals. Brain Res. Rev. 20, 68–90 (1995).

    Article  CAS  Google Scholar 

  20. Revai, K., Katona, G., Pytel, J., Czinner, A. & Pataki, L. Evaluation of hearing loss by means of inner ear acoustic emission in neonates with aminoglycoside. Orv. Hetil. 136, 2615–2618 (1995).

    CAS  PubMed  Google Scholar 

  21. Lenoir, M. & Pujol, R. Age-related structural investigation of the Bronx waltzermutant mouse cochlea: Scanning and transmission electron microscopy. Hear. Res. 13, 123–134 (1984).

    Article  CAS  Google Scholar 

  22. Chandler, P., Pennington, M., Maccecchini, M., Nashed, N. & Skolnick, P. Polyamine-like actions of peptides derived from conantokin-G, an NMDA antago nist. J. Biol. Chem. 268, 17173–17178 (1993).

    CAS  PubMed  Google Scholar 

  23. Hashimoto, K., Mantione, C.R., Spada, M.R., Neumeyer, J.L. & London, E.D. Further characterization of [3H]ifenprodil binding in rat brain. Eur. J. Pharmacol. Mol. Pharmacol. Sect. 266, 67–77 (1994).

    Article  CAS  Google Scholar 

  24. Akiyoshi, M., Yano, S. & Ikeda, T. Ototoxicity of spectinomycin. Jpn. J. Antibiot. 29, 771–782 (1976).

    Article  CAS  Google Scholar 

  25. Reynolds, I.J. & Miller, R.J. Ifenprodil is a novel type of N-methyl-D-aspartate receptor antagonist: Interaction with polyamines. Mol. Pharmacol. 36, 758–765 (1989).

    CAS  PubMed  Google Scholar 

  26. Eybalin, M. Neurotransmitters and neuromodulators in the mammalian cochlea. Physiol. Rev. 73, 309–373 (1993).

    Article  CAS  Google Scholar 

  27. Benveniste, M. & Mayer, M.L. Multiple effects of spermine on N-methyl-D-aspartic acid receptor responses of rat cultured hippocampal neurons. J. Physiol. (Lond.) 464, 131–163 (1993).

    Article  CAS  Google Scholar 

  28. Romano, C. & Williams, K. Modulation of NMDA receptors by polyamines. in The Neuropharmacology of Polyamines. (ed. Carter, C.) 81–106 (Academic Press, London, 1994).

    Google Scholar 

  29. Desrochers, C.S. & Schacht, J. Neomycin concentrations in inner ear tissues and other organs of the guinea pig after chronic drug administration. Acta Otolaryngol. 93, 233–236 (1982).

    Article  CAS  Google Scholar 

  30. Reynolds, I.J. Arcaine uncovers dual interactions of polyamines with the N-methyl-D-aspartate receptor. J. Pharmacol. Exp. Ther. 256, 1001–1007 (1990).

    Google Scholar 

  31. Ernfors, P., Duan, M.L., ElShamy, W.M. & Canlon, B. Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3. Nature Med. 2, 463–467 (1996).

    Article  CAS  Google Scholar 

  32. Scatton, B. et al. Neuroprotective potential of the polyamine site-directed NMDA receptor antagonists-ifenprodil and eliprodil. in Direct and Allosteric Control of Glutamate Receptors, (eds. Palfreyman, M.G., Reynolds, I.J., & Skolnick, P.) 139–154 (CRC Press, Boca Raton, Florida, 1994).

    Google Scholar 

  33. Gill, R., Foster, A.C. & Woodruff, G.N. MK-801 is neuroprotective in gerbils when administered during the postischaemic period. Neuroscience 3, 847–855 (1988).

    Article  Google Scholar 

  34. Sveinbjornsdottir, S. et al. The excitatory amino acid antagonist D-CPP-ene (SDZ EAA-494) in patients with epilepsy. Epilepsy Res. 16, 165–174 (1993).

    Article  CAS  Google Scholar 

  35. Cherkofsky, S.C. Aminocyclopropanecarboxylic acid: Mouse to man interspecies pharmacokinetic comparisons and allometric relationships. J. Pharm. Sci. 85, 1231–1235 (1995).

    Article  Google Scholar 

  36. Patat, A. et al. Lack of amnestic psychotomimetic or impairing effect on psychomotor performance of eliprodil, a new NMDA antagonist. Int. Clin. Psychopharmacol. 9, 155–162 (1994).

    Article  CAS  Google Scholar 

  37. Loscher, W., Nolting, B. & Honack, D. Evaluation of CPP, a selective NMDA antagonist, in various rodent models of epilepsy: Comparison of other NMDA antagonists, and with diazepam and phenobarbital. Eur. J. Pharmacol. 152, 9–17 (1988).

    Article  CAS  Google Scholar 

  38. Oliveira, J.A.A. Aminoglycoside antibiotics — Neomycin. in Audiovestibular Toxicity of Drugs (ed. Oliveira, J.A.A.) 223–244 (CRC Press, Boca Raton, Florida, 1989).

    Google Scholar 

  39. Bamonte, F., Parravicini, L. & Arpini, A. Histological evaluation of ototoxic reaction due to some aminoglycoside antibiotics. Arch. Otorhinolaryngol. 228, 163–170 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basile, A., Huang, JM., Xie, C. et al. N–Methyl–D–aspartate antagonists limit aminoglycoside antibiotic–induced hearing loss. Nat Med 2, 1338–1343 (1996). https://doi.org/10.1038/nm1296-1338

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1296-1338

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing