Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Swedish mutation causes early-onset Alzheimer's disease by β-secretase cleavage within the secretory pathway

Abstract

Several missense mutations causing early-onset Alzheimer's disease (AD) have been described in the gene coding for the β-amyloid precursor protein (βAPP). A double mutation found in a Swedish family is located before the amyloid β-peptide (Aβ) region of βAPP and results in the increased production and secretion of Aβ. Here we show that the increased production of Aβ results from a cellular mechanism, which differs substantially from that responsible for the production of Aβ from wild-type βAPP. in the latter case, Aβ generation requires reinternalization and recycling of βAPP. In the case of the Swedish mutation the N-terminal β-secretase cleavage of Aβ occurs in Golgi-derived vesicles, most likely within secretory vesicles. Therefore, this cleavage occurs in the same compartment as the α-secretase cleavage, which normally prevents Aβ production, explaining the increased Aβ generation by a competition between α and β-secretase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Selkoe, D.J. Cell biology of the amyloid β-protein precursor and the mechanism of Alzheimer's disease. Annu. Rev. Cell Biol. 10, 373–403 (1994).

    Article  CAS  Google Scholar 

  2. Kang, J.H. et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736 (1987).

    Article  CAS  Google Scholar 

  3. Haass, C. & Selkoe, D.J. Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide. Cell 75, 1039–1042 (1993).

    Article  CAS  Google Scholar 

  4. Esch, F.S. et al. Cleavage of amyloid β-peptide during constitutive processing of its precursor. Science 248, 1122–1124 (1990).

    Article  CAS  Google Scholar 

  5. Sisodia, S.S., Koo, E.H., Beyreuther, K., Unterbeck, A. & Price, D.L. Evidence that β-amyloid protein in Alzheimer's disease is not derived by normal processing. Science 248, 492–495 (1990).

    Article  CAS  Google Scholar 

  6. Weidemann, A. et al. Identification, biogenesis and localization of precursors of Alzheimer's disease A4 amyloid protein. Cell 57, 115–126 (1989).

    Article  CAS  Google Scholar 

  7. Haass, C. et al. Amyloid β-peptide is produced by cultured Cells during normal metabolism. Nature 359, 322–325 (1992).

    Article  CAS  Google Scholar 

  8. Shoji, M. et al. Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science 258, 126–129 (1992).

    Article  CAS  Google Scholar 

  9. Mullan, M. & Crawford, F. Genetic and molecular advances in Alzheimer's disease. Trends Neurosci. 16, 398–403 (1993).

    Article  CAS  Google Scholar 

  10. Citron, M. et al. Mutation of the β-amyloid precursor protein in familial Alzheimer's disease increases β-protein production. Nature 360, 672–674 (1992).

    Article  CAS  Google Scholar 

  11. Cai, X., Golde, T. & Younkin, S. Release of excess amyloid βprotein from a mutant amyloid β protein precursor. Science 259, 514–516 (1993).

    Article  CAS  Google Scholar 

  12. Felsenstein, K.M., Hunihan, L.W. & Roberts, S. Altered cleavage and secretion of a recombinant β-APP bearing the Swedish familial Alzheimer's disease mutation. Nature Genet. 6, 251–256 (1994).

    Article  CAS  Google Scholar 

  13. Suzuki, N. et al. An increased percentage of long amyloid β-protein secreted by familial amyloid β protein precursor (βAPP717) mutants. Science 264, 1336–1340 (1994).

    Article  CAS  Google Scholar 

  14. Jarrett, J. & Lansbury, P. Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058 (1993).

    Article  CAS  Google Scholar 

  15. Haass, C., Hung, A.Y., Selkoe, D.J. & Teplow, D.B. Mutations associated with a locus for familial Alzheimer's disease result in alternative processing of amyloid β-amyloid protein precursor. J. biol. Chem. 269, 17741–17748 (1994).

    CAS  PubMed  Google Scholar 

  16. Haass, C., Koo, E.H., Capell, A., Teplow, D.B. & Selkoe, D.J. Polarized sorting of β-amyloid precursor protein and its proteolytic products in MDCK cells is regulated by two independent signals. J. Cell Biol. 128, 537–547 (1995).

    Article  CAS  Google Scholar 

  17. Kuentzel, S.L., Ali, S.M., Altman, R.A., Greenberg, B.D. & Raub, T.J. The Alzheimer β-amyloid protein precursor/protease nexin-II is cleaved by secretase in a trans-Golgi secretory compartment in human neuroglioma cells. Biochem. J. 295, 367–378 (1993).

    Article  CAS  Google Scholar 

  18. Nordstedt, C., Caporaso, G., Thyberg, J., Gandy, S. & Greengard, P. Identification of the Alzheimer β/A4 amyloid precursor protein in clathrin-coated vesicles purified from PC12 cells. J. Biol. Chem. 268, 608–612 (1993).

    CAS  PubMed  Google Scholar 

  19. Haass, C., Koo, E.H., Mellon, A., Hung, A.Y. & Selkoe, D.J. Targeting of cell-surface β-amyloid precursor protein to lysosomes: Alternative processing into amyloid-bearing fragments. Nature 357, 500–503 (1992).

    Article  CAS  Google Scholar 

  20. Lai, A., Sisodia, S. & Trowbridge, I.S. Characterization of sorting signals in the β-amyloid precursor protein cytoplasmic domain. J. biol. Chem. 270, 3565–3573 (1995).

    Article  CAS  Google Scholar 

  21. Golde, T.E., Estus, S., Younkin, L.H., Selkoe, D.J. & Younkin, S. Processing of the amyloid protein precursor to potentially amyloidogenic carboxyl-terminal derivatives. Science 255, 728–730 (1992).

    Article  CAS  Google Scholar 

  22. Haass, C., Hung, A.Y., Schlossmacher, M.G., Teplow, D.B. & Selkoe, D.J. β-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J. biol. Chem. 268, 3021–3024 (1993).

    CAS  Google Scholar 

  23. Koo, E.H. & Squazzo, S. Evidence that production and release of amyloid β-protein involves the endocytic pathway. J. biol. Chem. 269, 17386–17389 (1994).

    CAS  PubMed  Google Scholar 

  24. Lo, A.C.Y., Haass, C., Wagner, S.L., Teplow, D.B. & Sisodia, S.S. Metabolism of the “Swedish” amyloid precursor protein variant in Madin-Darby canine kidney cells. J. biol. Chem. 269, 30966–30973 (1994).

    CAS  PubMed  Google Scholar 

  25. De Strooper, B. et al. Basolateral secretion of amyloid precursor protein in Madin-Darby canine kidney cells is disturbed by alterations of intracellular pH and by introducing a mutation associated with familial Alzheimer's disease. J. biol. Chem. 270, 4058–4065 (1995).

    Article  CAS  Google Scholar 

  26. Knops, J. et al. Cell-type and APP-type specific inhibition of Aβ release by bafilomycin Al, a selective inhibitor of vacuolar ATPases. J. biol. Chem. 270, 2419–2422 (1995).

    Article  CAS  Google Scholar 

  27. Kelly, R.B. Microtubules, membrane traffic, and cell organization. Cell 61, 5–7 (1990).

    Article  CAS  Google Scholar 

  28. Matlin, K.S. & Simons, K. Reduced temperature prevents transfer of a membrane glycoprotein to the cell surface but does not prevent terminal glycosylation. Cell 34, 233–243 (1983).

    Article  CAS  Google Scholar 

  29. Chen, J.W., Murphy, T.L., Willingham, M.C., Pastan, I. & August, T. Identification of two lysosomal membrane glycoproteins. J. Cell Biol. 101, 85–95 (1985).

    Article  CAS  Google Scholar 

  30. Citron, M., Teplow, D.B. & Selkoe, D.J. Generation of amyloid βprotein from its precursor is sequence specific. Neuron 14, 661–670 (1995).

    Article  CAS  Google Scholar 

  31. Haass, C., Capell, A., Citron, M., Teplow, D. & Selkoe, D.J. The vacuolar H+ ATPase inhibitor bafilomycin Al differentially affects proteolytic processing of mutant and wild-type β-amyloid precursor protein. J. biol. Chem. 270, 6186–6192 (1995).w

    Article  CAS  Google Scholar 

  32. Hung, A. et al. Activation of protein kinase C inhibits cellular production amyloid β-protein. J. biol. Chem. 268, 22956–22962 (1993).

    Google Scholar 

  33. Yamazaki, T., Selkoe, D.J. & Koo, E.H. Trafficking of Cell-surface β-amyloid precursor protein: Retrograde and transcytotic transport in cultured neurons. J. Cell Biol. 129, 431–442 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haass, C., Lemere, C., Capell, A. et al. The Swedish mutation causes early-onset Alzheimer's disease by β-secretase cleavage within the secretory pathway. Nat Med 1, 1291–1296 (1995). https://doi.org/10.1038/nm1295-1291

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1295-1291

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing