Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prevention of diabetes by manipulation of anti-IGRP autoimmunity: high efficiency of a low-affinity peptide


Antigen therapy may hold great promise for the prevention of autoimmunity; however, most clinical trials have failed, suggesting that the principles guiding the choice of treatment remain ill defined. Here, we examine the antidiabetogenic properties of altered peptide ligands of CD8+ T cells recognizing an epitope of islet-specific glucose-6-phosphatase catalytic subunit–related protein (IGRP206–214), a prevalent population of autoreactive T cells in autoimmune diabetes. We show that islet-associated CD8+ T cells in nonobese diabetic mice recognize numerous IGRP epitopes, and that these cells have a role in the outcome of protocols designed to induce IGRP206–214-specific tolerance. Ligands targeting IGRP206–214-reactive T cells prevented disease, but only at doses that spared low-avidity clonotypes. Notably, near complete depletion of the IGRP206–214-reactive T-cell pool enhanced the recruitment of subdominant specificities and did not blunt diabetogenesis. Thus, peptide therapy in autoimmunity is most effective under conditions that foster occupation of the target organ lymphocyte niche by nonpathogenic, low-avidity clonotypes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Agonistic activity of APLs on 8.3-CD8+ T cells.
Figure 2: Differences in the functional avidity of APLs correlate with differences in peptide-MHC–binding avidity and tolerogenic activity.
Figure 3: Antidiabetogenic activity of APLs in wild-type NOD mice.
Figure 4: NRP-V7 and IGRP206-214 cannot blunt progression of diabetes, despite depleting the IGRP206–214-reactive CD8+ T-cell pool.
Figure 5: NOD mice spontaneously mount intraislet CD8+ T-cell responses against multiple IGRP epitopes.
Figure 6: Unlike NRP-I4-treatment, treatment with IGRP206–214 induces increased responses against other IGRP epitopes.


  1. Wraith, D.C., Smilek, D.E., Mitchell, D.J., Steinman, L. & McDevitt, H.O. Antigen recognition in autoimmune encephalomyelitis and the potential for peptide-mediated immunotherapy. Cell 59, 247–255 (1989).

    Article  CAS  Google Scholar 

  2. Metzler, B. & Wraith, D. Inhibition of experimental autoimmune encephalomyelitis by inhalation but not oral administration of the encephalitogenic peptide: influence of MHC binding affinity. Int. Immunol. 5, 1159–1165 (1993).

    Article  CAS  Google Scholar 

  3. Liu, G. & Wraith, D. Affinity for class II MHC determines the extent to which soluble peptides tolerize autoreactive T cells in naive and primed adult mice–implications for autoimmunity. Int. Immunol. 7, 1255–1263 (1995).

    Article  CAS  Google Scholar 

  4. Anderton, S. & Wraith, D. Hierarchy in the ability of T cell epitopes to induce peripheral tolerance to antigens from myelin. Eur. J. Immunol. 28, 1251–1261 (1998).

    Article  CAS  Google Scholar 

  5. Karin, N., Mitchell, D., Brocke, S., Ling, N. & Steinman, L. Reversal of experimental autoimmune encephalomyelitis by a soluble peptide variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of interferon γ and tumor necrosis factor α production. J. Exp. Med. 180, 2227–2237 (1994).

    Article  CAS  Google Scholar 

  6. Weiner, H. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 259, 1321–1324 (1993).

    Article  CAS  Google Scholar 

  7. Trentham, D. et al. Effects of oral administration of type II collagen on rheumatoid arthritis. Science 261, 1727–1730 (1993).

    Article  CAS  Google Scholar 

  8. McKown, K. et al. Lack of efficacy of oral bovine type II collagen added to existing therapy in rheumatoid arthritis. Arthritis Rheum. 42, 1204–1208 (1999).

    Article  CAS  Google Scholar 

  9. Pozzilli, P. et al. No effect of oral iinsulin on residual beta-cell function in recent-onset type 1 diabetes (the IMDIAB VII). IMDIAB Group. Diabetologia 43, 1000–1004 (2000).

    Article  CAS  Google Scholar 

  10. Group. D.P.T.-T.D.S. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N. Engl. J. Med. 346, 1685–1691 (2002).

  11. Kappos, L. et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. Nat. Med. 6, 1176–1182 (2000).

    Article  CAS  Google Scholar 

  12. Bielekova, B. et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat. Med. 6, 1167–1175 (2000).

    Article  CAS  Google Scholar 

  13. Amrani, A. et al. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature 406, 739–742 (2000).

    Article  CAS  Google Scholar 

  14. Santamaria, P. Effector lymphocytes in autoimmunity. Curr. Opin. Immunol. 13, 663–669 (2001).

    Article  CAS  Google Scholar 

  15. Liblau, R., Wong, S., Mars, L. & Santamaria, P. Autoreactive CD8+ T-cells in organ-specific autoimmunity: emerging targets for therapeutic intervention. Immunity 17, 1–6 (2002).

    Article  CAS  Google Scholar 

  16. Lieberman, S. & DiLorenzo, T. A comprehensive guide to antibody and T-cell responses in type 1 diabetes. Tissue Antigens 62, 359–377 (2003).

    Article  CAS  Google Scholar 

  17. Santamaria, P. et al. β-cell-cytotoxic CD8+ T cells from nonobese diabetic mice use highly homologous T cell receptor α-chain CDR3 sequences. J. Immunol. 154, 2494–2503 (1995).

    CAS  PubMed  Google Scholar 

  18. Verdaguer, J. et al. Acceleration of spontaneous diabetes in TCR-β-transgenic nonobese diabetic mice by β-cell cytotoxic CD8+ T cells expressing identical endogenous TCR-α chains. J. Immunol. 157, 4726–4735 (1996).

    CAS  PubMed  Google Scholar 

  19. Verdaguer, J. et al. Spontaneous autoimmune diabetes in monoclonal T cell nonobese diabetic mice. J. Exp. Med. 186, 1663–1676 (1997).

    Article  CAS  Google Scholar 

  20. DiLorenzo, T. et al. Major histocompatibility complex class I-restricted T cells are required for all but the end stages oof diabetes development in nonobese diabetic mice and a use prevalent T cell receptor alpha chain gene rearrangement. Proc. Natl Acad. Sci. USA 95, 12538–12543 (1998).

    Article  CAS  Google Scholar 

  21. Anderson, B., Park, B.J., Verdaguer, J., Amrani, A. & Santamaria, P. Prevalent CD8+ T cell response against one peptide/MHC complex in autoimmune diabetes. Proc. Natl Acad. Sci. USA 96, 9311–9316 (1999).

    Article  CAS  Google Scholar 

  22. Amrani, A. et al. Expansion of the antigenic repertoire of a single T cell receptor upon T cell activation. J. Immunol. 167, 655–666 (2001).

    Article  CAS  Google Scholar 

  23. Lieberman, S. et al. Identity of the beta cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes. Proc. Natl Acad. Sci. USA 100, 8384–8388 (2003).

    Article  CAS  Google Scholar 

  24. Trudeau, J.D. et al. Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. J. Clin. Invest. 111, 217–223 (2003).

    Article  CAS  Google Scholar 

  25. Martin, C. et al. Cloning and characterization of the human and rat islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) genes. J. Biol. Chem. 276, 25197–25204 (2001).

    Article  CAS  Google Scholar 

  26. Pociot, F. & McDermott, M. Genetics of type 1 diabetes mellitus. Genes Immun. 3, 235–249 (2002).

    Article  CAS  Google Scholar 

  27. Aichele, P. et al. Peptide-induced T-cell tolerance to prevent autoimmune diabetes in a transgenic mouse model. Proc. Natl Acad. Sci. USA 91, 444–448 (1994).

    Article  CAS  Google Scholar 

  28. Toes, R., Offringa, R., Blom, R., Melief, C. & Kast, W. Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc. Natl Acad. Sci. USA 93, 7855–7860 (1996).

    Article  CAS  Google Scholar 

  29. Wong, F.S. et al. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nat. Med. 9, 1026–1031 (1999).

    Article  Google Scholar 

  30. Metzler, B., Anderton, S., Manickasingham, S. & Wraith, D. Kinetics of peptide uptake and tissue distribution following a single intranasal dose of peptide. Immunol. Invest. 29, 61–70 (2000).

    Article  CAS  Google Scholar 

  31. Alexander-Miller, M., Leggatt, G. & Berzofsky, J. Selective expansion of high- or low-avidity cytotoxic T-lymphocytes and efficacy for adoptive immunotherapy. Proc. Natl Acad. Sci. USA 93, 4102–4107 (1996).

    Article  CAS  Google Scholar 

  32. Perez-Diez, A., Spiess, P., Restifo, N., Matzinger, P. & Marincola, F. Intensity of the vaccine-elicited immune response determines tumor clearance. J. Immunol. 168, 338–347 (2002).

    Article  CAS  Google Scholar 

  33. Zeh, H., Perry-Lalley, D., Dudley, M., Rosenberg, S. & Yang, J. High avidity CTLS for two self-antigens demonstrate superior in vitro and in vivo anti-tumor efficacy. J. Immunol. 162, 989–994 (1999).

    CAS  PubMed  Google Scholar 

  34. Arif, S. et al. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J. Clin. Invest. 113, 451–463 (2004).

    Article  CAS  Google Scholar 

  35. Nicholson, L.B., Greer, J.M., Sobel, R.A., Lees, M.B. & Kuchroo, V.K. An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity 3, 397–405 (1995).

    Article  CAS  Google Scholar 

  36. Gross, D.A. et al. High vaccination efficiency of low-affinity epitopes in antitumor immunotherapy. J. Clin. Invest. 113, 425–433 (2004).

    Article  CAS  Google Scholar 

Download references


We thank T. Utsugi for Takeda recombinant IL-2, L. Allen, S. Bou, M. Deuma, C. Fehr and T. Trinh for animal care and technical assistance, and T. DiLorenzo, U. Walter and Y. Yang for feedback on the manuscript. This work was supported by the Canadian Institutes of Health Research, the Juvenile Diabetes Research Foundation (JDRF), and the Natural Sciences and Engineering Research Council of Canada. A.A. was supported by the JDRF and the Alberta Heritage Foundation for Medical Research (AHFMR), J.Y. by the JDRF, and P. Serra and B. Han by the AHFMR. A.F.M.M. and L.E.-K. were supported by the Mathematics of Information Technology and Complex Systems (MITACS) Network of Centers of Excellence. P. Santamaria is a Scientist of the AHFMR and a member of MITACS. The JMDRC is supported by the Diabetes Association (Foothills).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Pere Santamaria.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

IGRP-specific peptide library (PDF 13 kb)

Supplementary Table 2

Amounts of IFN-γ (pg/ml) secreted by islet-derived CD8+ T cells (PDF 33 kb)

Supplementary Table 3

Amounts of IFN-γ (pg/ml) secreted by islet-derived CD8+ T cells (PDF 36 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Han, B., Serra, P., Amrani, A. et al. Prevention of diabetes by manipulation of anti-IGRP autoimmunity: high efficiency of a low-affinity peptide. Nat Med 11, 645–652 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing