Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ATM regulates target switching to escalating doses of radiation in the intestines

A Corrigendum to this article was published on 01 February 2006

Abstract

Although stem cells succumbing to reproductive death are assumed to be the single relevant targets in radiation tissue damage, recent studies showed intestinal stem cell damage is conditionally linked to crypt endothelial apoptosis, defining a two-target model. Here we report that when mouse intestines were protected against microvascular apoptosis, radiation switched as the dose escalated to a previously unrecognized crypt stem cell target, activating ceramide synthase–mediated apoptosis to initiate intestinal damage. Whereas ataxia telangiectasia-mutated (ATM) kinase normally represses ceramide synthase, its derepression in Atm−/− mice increased crypt stem cell radiosensitivity 3.7-fold without sensitizing the microvascular response. Discovery of this intestinal radiosensitivity mechanism allowed design of an antisense Atm oligonucleotide treatment which phenocopied the Atm−/− mouse, reordering ceramide synthase–mediated stem cell death to become the first-line gastrointestinal response of wild-type littermates. These experiments indicate that tissues operate multiple potential targets activated consecutively according to their inherent radiosensitivities that may be reordered therapeutically to control radiation tissue responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radiation induces an apoptotic response in the intestinal crypt clonogen compartment of mice exposed to ≥17 Gy WBR.
Figure 2: Exposure to 18 Gy WBR induces ceramide synthase–mediated apoptosis in the crypt clonogen compartment and crypt depletion, inhibited by FB1.
Figure 3: ATM depletion hypersensitizes intestinal crypt clonogens to radiation-induced ceramide synthase–mediated apoptosis.
Figure 4: Pharmacologic inactivation of ATM by antisense ODN hypersensitizes wild-type C57Bl/6 mice to WBR through ceramide synthase–mediated intestinal damage.
Figure 5: Dose response curves for ASMase-mediated endothelial apoptosis in the lamina propria of C57BL/6 mice and ceramide synthase–mediated apoptosis of crypt clonogens in wild-type C57BL/6 and Atm−/− mice after exposure to WBR.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Puck, T.T. & Markus, P.I. Action of X-rays on mammalian cells. J. Exp. Med. 103, 653–666 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moore, J.V., Hendry, J.H. & Hunter, R.D. Dose-incidence curves for tumour control and normal tissue injury, in relation to the response of clonogenic cells. Radiother. Oncol. 1, 143–157 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Trott, K.R. Tumour stem cells: the biological concept and its application in cancer treatment. Radiother. Oncol. 30, 1–5 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Bach, S.P., Renehan, A.G. & Potten, C.S. Stem cells: the intestinal stem cell as a paradigm. Carcinogenesis 21, 469–476 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Budach, W., Taghian, A., Freeman, J., Gioioso, D. & Suit, H.D. Impact of stromal sensitivity on radiation response of tumors. J. Natl. Cancer Inst. 85, 988–993 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Abraham, R.T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177–2196 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Khanna, K.K., Lavin, M.F., Jackson, S.P. & Mulhern, T.D. ATM, a central controller of cellular responses to DNA damage. Cell Death Differ. 8, 1052–1065 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Jackson, S.P. Sensing and repairing DNA double-strand breaks. Carcinogenesis 23, 687–696 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Valerie, K. & Povirk, L.F. Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22, 5792–5812 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Powell, S.N. & Kachnic, L.A. Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 22, 5784–5791 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Bedford, J.S., Mitchell, J.B., Griggs, H.G. & Bender, M.A. Radiation-induced cellular reproductive death and chromosome aberrations. Radiat. Res. 76, 573–586 (1978).

    Article  CAS  PubMed  Google Scholar 

  12. Chu, K. et al. Computerized video time-lapse (CVTL) analysis of cell death kinetics in human bladder carcinoma cells (EJ30) X-irradiated in different phases of the cell cycle. Radiat. Res. 158, 667–677 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Brown, J.M. & Wilson, G. Apoptosis genes and resistance to cancer therapy: what does the experimental and clinical data tell us? Cancer Biol. Ther. 2, 477–490 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Morita, Y. et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat. Med. 6, 1109–1114 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Paris, F. et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293, 293–297 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Maj, J.G. et al. Microvascular function regulates intestinal crypt response to radiation. Cancer Res. 63, 4338–4341 (2003).

    CAS  PubMed  Google Scholar 

  17. Garcia-Barros, M. et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155–1159 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Withers, H.R. Biologic basis for altered fractionation schemes. Cancer 55, 2086–2095 (1985).

    Article  CAS  PubMed  Google Scholar 

  19. Gordon, J.I. & Hermiston, M.L. Differentiation and self-renewal in the mouse gastrointestinal epithelium. Curr. Opin. Cell Biol. 6, 795–803 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Potten, C.S., Booth, C. & Pritchard, D.M. The intestinal epithelial stem cell: the mucosal governor. Int. J. Exp. Pathol. 78, 219–243 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Potten, C.S., Owen, G. & Booth, D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J. Cell Sci. 115, 2381–2388 (2002).

    CAS  PubMed  Google Scholar 

  22. Brittan, M. & Wright, N.A. Gastrointestinal stem cells. J Pathol. 197, 492–509 (2002).

    Article  PubMed  Google Scholar 

  23. Chwalinski, S., Potten, C.S. & Evans, G. Double labelling with bromodeoxyuridine and [3H]-thymidine of proliferative cells in small intestinal epithelium in steady state and after irradiation. Cell Tissue Kinet. 21, 317–329 (1988).

    CAS  PubMed  Google Scholar 

  24. Withers, H.R. Regeneration of intestinal mucosa after irradiation. Cancer 28, 75–81 (1971).

    Article  CAS  PubMed  Google Scholar 

  25. Potten, C.S. A comprehensive study of the radiobiological response of the murine (BDF1) small intestine. Int. J. Radiat. Biol. 58, 925–973 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Withers, H.R. & Elkind, M.M. Radiosensitivity and fractionation response of crypt cells of mouse jejunum. Radiat. Res. 38, 598–613 (1969).

    Article  CAS  PubMed  Google Scholar 

  27. Liao, W.C. et al. Ataxia telangiectasia-mutated gene product inhibits DNA damage-induced apoptosis via ceramide synthase. J. Biol. Chem. 274, 17908–17917 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Westphal, C.H. et al. Loss of atm radiosensitizes multiple p53 null tissues. Cancer Res. 58, 5637–5639 (1998).

    CAS  PubMed  Google Scholar 

  30. Westphal, C.H. et al. Atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but not in resistance to acute radiation toxicity. Nat. Genet. 16, 397–401 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Herzog, K.H., Chong, M.J., Kapsetaki, M., Morgan, J.I. & McKinnon, P.J. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 280, 1089–1091 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Santana, P. et al. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86, 189–199 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Kaplan, E.L. & Meier, P. Nonparametric estimation from incomplete observation. J. Am. Stat. Assoc. 53, 457–481 (1958).

    Article  Google Scholar 

  34. Mantel, N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 50, 163–170 (1966).

    CAS  PubMed  Google Scholar 

  35. Haimovitz-Friedman, A. et al. Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J. Exp. Med. 186, 1831–1841 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Jaio for technical assistance. These studies were supported by US National Institutes of Health grants CA52462 (to Z.F.) and CA 85704 (to R.K.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Kolesnick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Ceramide is generated in the GI mucosa of bFGF-treated C57Bl/6 mice after 18Gy but not 15Gy WBR. (PDF 212 kb)

Supplementary Fig. 2

Ionizing radiation hypersensitizes Atm−/− mice towards the lethal effects of WBR. (PDF 249 kb)

Supplementary Fig. 3

FB1 inhibits ceramide elevation in the proximal jejunal mucosa of Atm−/− mice. (PDF 248 kb)

Supplementary Fig. 4

ATM-AS-ODN decreases crypt survival at 3.5 days in C57Bl/6 mice exposed to 10Gy WBR. (PDF 208 kb)

Supplementary Methods (PDF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ch'ang, HJ., Maj, J., Paris, F. et al. ATM regulates target switching to escalating doses of radiation in the intestines. Nat Med 11, 484–490 (2005). https://doi.org/10.1038/nm1237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing