Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrin αvβ3 is a coreceptor for human cytomegalovirus

Abstract

Human cytomegalovirus (HCMV) is a widespread opportunistic pathogen that causes birth defects in newborns and severe disease in immunocompromised individuals. The broad tropism of HCMV infection suggests that it uses multiple receptors. We recently showed that the epidermal growth factor receptor (EGFR) serves as a receptor for HCMV. Here we show that HCMV also uses integrin αvβ3 as a coreceptor. Upon infection, HCMV glycoproteins gB and gH independently bind to EGFR and αvβ3, respectively, to initiate viral entry and signaling. αvβ3 then translocates to lipid rafts where it interacts with EGFR to induce coordinated signaling. The coordination between EGFR and αvβ3 is essential for the early events of HCMV infection, including viral entry, RhoA downregulation, stress-fiber disassembly and viral nuclear trafficking. Our findings support a model in which EGFR and αvβ3 work together as coreceptors for HCMV entry and signaling. This discovery is fundamental to understanding HCMV pathogenesis and developing treatment strategies targeted to viral receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Both αvβ3 and EGFR are required for HCMV infection, and HCMV binds both EGFR and αvβ3 independently.
Figure 2: Coordinated signaling between EGFR and αvβ3 is generated when both αvβ3 and EGFR are activated through gH and gB, respectively.
Figure 3: HCMV induces the formation of an EGFR-αvβ3 complex when both αvβ3 and EGFR are activated.
Figure 4: The lipid raft microdomain is involved in regulating HCMV-induced formation of EGFR-αvβ3 complex and coordination of signaling.
Figure 5: Coordination of PI3-K signaling and Src signaling within lipid rafts is required for HCMV entry.
Figure 6: Coordination between EGFR- and αvβ3-mediated signaling is required for HCMV-induced downregulation of RhoA activity, disruption of stress fibers and virus nuclear translocation.

Similar content being viewed by others

References

  1. Huang, E.-S. & Kowalik, T.F. The pathogenicity of human cytomegalovirus: An overview. in Molecular Aspects of Human Cytomegalovirus Diseases (eds. Becker, Y., Darai, G. & Huang, E.S.) 1–45 (Springer, Berlin, 1993).

    Google Scholar 

  2. Speir, E. et al. Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science 265, 391–394 (1994).

    Article  CAS  Google Scholar 

  3. Mocarski, E.S. & Courcelle, C.T. Cytomegaloviruses and Their Replication. in Fields Virology Vol. 2 (eds. Knipe, D.M. & Howley, P.M.) 2629–2673 (Lippincott William & Wilkins, Philadelphia, 2001).

    Google Scholar 

  4. Macher, A.M. et al. Death in the AIDS patient: role of cytomegalovirus. N. Engl. J. Med. 309, 1454 (1983).

    CAS  PubMed  Google Scholar 

  5. Shen, Y., Zhu, H. & Shenk, T. Human cytomagalovirus IE1 and IE2 proteins are mutagenic and mediate “hit-and-run” oncogenic transformation in cooperation with the adenovirus E1A proteins. Proc. Natl. Acad. Sci. USA 94, 3341–3345 (1997).

    Article  CAS  Google Scholar 

  6. Lukac, D.M. & Alwine, J.C. Effects of human cytomegalovirus major immediate-early proteins in controlling the cell cycle and inhibiting apoptosis: studies with ts13 cells. J. Virol. 73, 2825–2831 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cinatl, J., Scholz, M., Kotchetkov, R., Vogel, J.U. & Doerr, H.W. Molecular mechanisms of the modulatory effects of HCMV infection in tumor cell biology. Trends Mol. Med. 10, 19–23 (2004).

    Article  CAS  Google Scholar 

  8. Flint, S.J., Enquist, L.W., Krug, M.R., Racaniello, V.R. & Skalka, A.M. Chapter 4 Virus attachment to host cell. in Principles of Virology: Molecular Biology, Pathogenesis, and Control. ch 4 101–131 (AWSM Press, Washington, D.C., 2000).

    Google Scholar 

  9. Feng, Y., Broder, C.C., Kennedy, P.E. & Berger, E.A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877 (1996).

    Article  CAS  Google Scholar 

  10. Di Pasquale, G. et al. Identification of PDGFR as a receptor for AAV-5 transduction. Nat. Med. 9, 1306–1312 (2003).

    Article  CAS  Google Scholar 

  11. Qing, K. et al. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat. Med. 5, 71–77 (1999).

    Article  CAS  Google Scholar 

  12. Eppstein, D.A. et al. Epidermal growth factor receptor occupancy inhibits vaccinia virus infection. Nature 318, 663–665 (1985).

    Article  CAS  Google Scholar 

  13. Terry-Allison, T. et al. HveA (herpesvirus entry mediator A), a coreceptor for herpes simplex virus entry, also participates in virus-induced cell fusion. J. Virol. 72, 5802–5810 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nemerow, G.R. & Cheresh, D.A. Herpesvirus hijacks an integrin. Nat. Cell Biol. 4, E69–E71 (2002).

    Article  CAS  Google Scholar 

  15. Wang, X., Huong, S.M., Chiu, M.L., Raab-Traub, N. & Huang, E.S. Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 424, 456–461 (2003).

    Article  CAS  Google Scholar 

  16. Spear, P.G. & Longnecker, R. Herpesvirus entry: an update. J. Virol. 77, 10179–10185 (2003).

    Article  CAS  Google Scholar 

  17. Fortunato, E.A., McElroy, A.K., Sanchez, I. & Spector, D.H. Exploitation of cellular signaling and regulatory pathways by human cytomegalovirus. Trends Microbiol. 8, 111–119 (2000).

    Article  CAS  Google Scholar 

  18. Johnson, R.A., Wang, X., Ma, X.L., Huong, S.M. & Huang, E.S. Human cytomegalovirus up-regulates the phosphatidylinositol 3-kinase (PI3-K) pathway: inhibition of PI3-K activity inhibits viral replication and virus-induced signaling. J. Virol. 75, 6022–6032 (2001).

    Article  CAS  Google Scholar 

  19. Jones, N.L., Lewis, J.C. & Kilpatrick, B.A. Cytoskeletal disruption during human cytomegalovirus infection of human lung fibroblasts. Eur. J. Cell Biol. 41, 304–312 (1986).

    CAS  PubMed  Google Scholar 

  20. Kalejta, R.F. & Shenk, T. Manipulation of the cell cycle by human cytomegalovirus. Front. Biosci. 7, d295–d306 (2002).

    Article  CAS  Google Scholar 

  21. Schmidt, A. & Hall, M.N. Signaling to the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 14, 305–338 (1998).

    Article  CAS  Google Scholar 

  22. Burridge, K. & Wennerberg, K. Rho and Rac take center stage. Cell 116, 167–179 (2004).

    Article  CAS  Google Scholar 

  23. Schwartz, M.A. & Ginsberg, M.H. Networks and crosstalk: integrin signalling spreads. Nat. Cell Biol. 4, E65–E68 (2002).

    Article  CAS  Google Scholar 

  24. Hynes, R.O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).

    Article  CAS  Google Scholar 

  25. Giancotti, F.G. & Tarone, G. Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu. Rev. Cell Dev. Biol. 19, 173–206 (2003).

    Article  CAS  Google Scholar 

  26. Baron, W., Decker, L., Colognato, H. & ffrench-Constant, C. Regulation of integrin growth factor interactions in oligodendrocytes by lipid raft microdomains. Curr. Biol. 13, 151–155 (2003).

    Article  CAS  Google Scholar 

  27. Anderson, R.G. The caveolae membrane system. Annu. Rev. Biochem. 67, 199–225 (1998).

    Article  CAS  Google Scholar 

  28. Pike, L.J. Lipid rafts: bringing order to chaos. J. Lipid Res. 44, 655–667 (2003).

    Article  CAS  Google Scholar 

  29. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  CAS  Google Scholar 

  30. Pelkmans, L., Puntener, D. & Helenius, A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296, 535–539 (2002).

    Article  CAS  Google Scholar 

  31. Manes, S., del Real, G. & Martinez, A.C. Pathogens: raft hijackers. Nat. Rev. Immunol. 3, 557–568 (2003).

    Article  CAS  Google Scholar 

  32. Li, E. et al. Association of p130CAS with phosphatidylinositol-3-OH kinase mediates adenovirus cell entry. J. Biol. Chem. 275, 14729–14735 (2000).

    Article  CAS  Google Scholar 

  33. Wu, E. et al. Membrane cofactor protein is a receptor for adenoviruses associated with epidemic keratoconjunctivitis. J. Virol. 78, 3897–3905 (2004).

    Article  CAS  Google Scholar 

  34. Ling, Y., Maile, L.A. & Clemmons, D.R. Tyrosine phosphorylation of the beta3-subunit of the alphaVbeta3 integrin is required for embrane association of the tyrosine phosphatase SHP-2 and its further recruitment to the insulin-like growth factor I receptor. Mol. Endocrinol. 17, 1824–1833 (2003).

    Article  CAS  Google Scholar 

  35. Yurochko, A.D. et al. The human cytomegalovirus UL55 (gB) and UL75 (gH) glycoprotein ligands initiate the rapid activation of Sp1 and NF-kappaB during infection. J. Virol. 71, 5051–5059 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Keay, S. & Baldwin, B. The human fibroblast receptor for gp86 of human cytomegalovirus is a phosphorylated glycoprotein. J. Virol. 66, 4834–4838 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cudmore, S., Reckmann, I. & Way, M. Viral manipulations of the actin cytoskeleton. Trends Microbiol. 5, 142–148 (1997).

    Article  CAS  Google Scholar 

  38. Ren, X.D., Kiosses, W.B. & Schwartz, M.A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18, 578–585 (1999).

    Article  CAS  Google Scholar 

  39. Dimitrov, D.S. Virus entry: molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2, 109–122 (2004).

    Article  Google Scholar 

  40. Schneider-Schaulies, J. Cellular receptors for viruses: links to tropism and pathogenesis. J. Gen. Virol. 81, 1413–1429 (2000).

    Article  CAS  Google Scholar 

  41. Smith, A.E. & Helenius, A. How viruses enter animal cells. Science 304, 237–242 (2004).

    Article  CAS  Google Scholar 

  42. Fuller, A.O. & Perez-Romero, P. Mechanisms of DNA virus infection: entry and early events. Front. Biosci. 7, d390–d406 (2002).

    CAS  PubMed  Google Scholar 

  43. Greber, U.F. Signalling in viral entry. Cell. Mol. Life Sci. 59, 608–626 (2002).

    Article  CAS  Google Scholar 

  44. Moore, J.P. & Doms, R.W. The entry of entry inhibitors: a fusion of science and medicine. Proc. Natl. Acad. Sci. USA 100, 10598–10602 (2003).

    Article  CAS  Google Scholar 

  45. Feire, A.L., Koss, H. & Compton, T. Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain. Proc. Natl. Acad. Sci. USA 101, 15470–15475 (2004).

    Article  CAS  Google Scholar 

  46. Huang, E.S., Chen, S.T. & Pagano, J.S. Human cytomegalovirus. I. Purification and characterization of viral DNA. J. Virol. 12, 1473–1481 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Miller, N. & Hutt-Fletcher, L.M. A monoclonal antibody to glycoprotein gp85 inhibits fusion but not attachment of Epstein-Barr virus. J. Virol. 62, 2366–2372 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, J.H., Saito, K. & Yokoyama, S. Chimeric receptor analyses of the interactions of the ectodomains of ErbB-1 with epidermal growth factor and of those of ErbB-4 with neuregulin. Eur. J. Biochem. 269, 2323–2329 (2002).

    Article  CAS  Google Scholar 

  49. Tomlinson, C.C. & Damania, B. The K1 protein of Kaposi's sarcoma-associated herpesvirus activates the Akt signaling pathway. J. Virol. 78, 1918–1927 (2004).

    Article  CAS  Google Scholar 

  50. Arreaza, G., Melkonian, K.A., LaFevre-Bernt, M. & Brown, D.A. Triton X-100-resistant membrane complexes from cultured kidney epithelial cells contain the Src family protein tyrosine kinase p62yes. J. Biol. Chem. 269, 19123–19127 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Clemmons for β3 and mutated β3 plasmids. We thank N. Raab-Traub, J. S. Pagano and D. Evers for discussion and critical review of this manuscript. This study was supported by Public Health Service research grants AI47468 from the National Institute of Allergy and Infectious Diseases and CA 19014 from the National Cancer Institute, US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eng-Shang Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

HCMV, but not HSV, induces transient interaction between EGFR and αvβ3. (PDF 26 kb)

Supplementary Fig. 2

RhoA signaling is not essential for HCMV entry. (PDF 29 kb)

Supplementary Fig. 3

A proposed model for the initiation of HCMV infection: receptor binding and signaling. (PDF 155 kb)

Supplementary Fig. 4

Integrin β1 can substitute for β3 in facilitating HCMV infection. (PDF 30 kb)

Supplementary Fig. 5

Analysis of the purified HCMV virions by SDS-polyacrylaide gel electrophoresis and electron microscopy. (PDF 56 kb)

Supplementary Methods (PDF 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Huang, D., Huong, SM. et al. Integrin αvβ3 is a coreceptor for human cytomegalovirus. Nat Med 11, 515–521 (2005). https://doi.org/10.1038/nm1236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing