Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An essential function for NBS1 in the prevention of ataxia and cerebellar defects

This article has been updated

Abstract

Nijmegen breakage syndrome (NBS), ataxia telangiectasia and ataxia telangiectasia–like disorder (ATLD) show overlapping phenotypes such as growth retardation, microcephaly, cerebellar developmental defects and ataxia. However, the molecular pathogenesis of these neurological defects remains elusive. Here we show that inactivation of the Nbn gene (also known as Nbs1) in mouse neural tissues results in a combination of the neurological anomalies characteristic of NBS, ataxia telangiectasia and ATLD, including microcephaly, growth retardation, cerebellar defects and ataxia. Loss of Nbn causes proliferation arrest of granule cell progenitors and apoptosis of postmitotic neurons in the cerebellum. Furthermore, Nbn-deficient neuroprogenitors show proliferation defects (but not increased apoptosis) and contain more chromosomal breaks, which are accompanied by ataxia telangiectasia mutated protein (ATM)-mediated p53 activation. Notably, depletion of p53 substantially rescues the neurological defects of Nbn mutant mice. This study gives insight into the physiological function of NBS1 (the Nbn gene product) and the function of the DNA damage response in the neurological anomalies of NBS, ataxia telangiectasia and ATLD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disruption of the Nbn gene in embryonic stem and neuronal cells in mice.
Figure 2: Ataxia, microcephaly and cerebellar developmental defects in Nbn-CNS-del mice.
Figure 4: ATM-mediated p53 activation in Nbn-CNS-del neural cells.
Figure 3: Characterization of Nbn-deficient neural cells in vitro.
Figure 5: p53 deficiency rescues growth retardation and neurogenesis defects of Nbn-CNS-del mice.

Similar content being viewed by others

Change history

  • 17 April 2005

    replaced the incorrect figure with the correct image

Notes

  1. NOTE: In the version of this article initially published online, labels in Fig. 5a and b were incorrect. This mistake has been corrected for the HTML and print versions of the article.

References

  1. van der Burgt, I., Chrzanowska, K.H., Smeets, D. & Weemaes, C. Nijmegen breakage syndrome. J. Med. Genet. 33, 153–156 (1996).

    Article  CAS  Google Scholar 

  2. Stewart, G.S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577–587 (1999).

    Article  CAS  Google Scholar 

  3. Tauchi, H., Matsuura, S., Kobayashi, J., Sakamoto, S. & Komatsu, K. Nijmegen breakage syndrome gene, NBS1, and molecular links to factors for genome stability. Oncogene 21, 8967–8980 (2002).

    Article  CAS  Google Scholar 

  4. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nat. Rev. Cancer. 3, 155–168 (2003).

    Article  CAS  Google Scholar 

  5. Chun, H.H. & Gatti, R.A. Ataxia-telangiectasia, an evolving phenotype. DNA. Repair. (Amst). 3, 1187–1196 (2004).

    Article  CAS  Google Scholar 

  6. D'Amours, D. & Jackson, S.P. The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat. Rev. Mol. Cell. Biol. 3, 317–327 (2002).

    Article  CAS  Google Scholar 

  7. Dumon-Jones, V. et al. Nbn heterozygosity renders mice susceptible to tumor formation and ionizing radiation-induced tumorigenesis. Cancer. Res. 63, 7263–7269 (2003).

    CAS  PubMed  Google Scholar 

  8. Zhu, J., Petersen, S., Tessarollo, L. & Nussenzweig, A. Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr. Biol. 11, 105–109 (2001).

    Article  CAS  Google Scholar 

  9. Xiao, Y. & Weaver, D.T. Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in murine embryonic stem cells. Nucleic. Acids. Res. 25, 2985–2991 (1997).

    Article  CAS  Google Scholar 

  10. Kang, J., Bronson, R.T. & Xu, Y. Targeted disruption of NBS1 reveals its roles in mouse development and DNA repair. Embo. J. 21, 1447–1455 (2002).

    Article  CAS  Google Scholar 

  11. Williams, B.R. et al. A murine model of Nijmegen breakage syndrome. Curr. Biol. 12, 648–653 (2002).

    Article  CAS  Google Scholar 

  12. Theunissen, J.W. et al. Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol. Cell. 12, 1511–1523 (2003).

    Article  CAS  Google Scholar 

  13. McConnell, M.J. et al. Failed clearance of aneuploid embryonic neural progenitor cells leads to excess aneuploidy in the Atm-deficient but not the Trp53-deficient adult cerebral cortex. J. Neurosci. 24, 8090–8096 (2004).

    Article  CAS  Google Scholar 

  14. Allen, D.M. et al. Ataxia telangiectasia mutated is essential during adult neurogenesis. Genes. Dev. 15, 554–566 (2001).

    Article  CAS  Google Scholar 

  15. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    Article  CAS  Google Scholar 

  16. Xu, Y. et al. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes. Dev. 10, 2411–2422 (1996).

    Article  CAS  Google Scholar 

  17. Borghesani, P.R. et al. Abnormal development of Purkinje cells and lymphocytes in Atm mutant mice. Proc. Natl. Acad. Sci. USA. 97, 3336–3341 (2000).

    Article  CAS  Google Scholar 

  18. Betz, U.A., Vosshenrich, C.A., Rajewsky, K. & Muller, W. Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination. Curr. Biol. 6, 1307–1316 (1996).

    Article  CAS  Google Scholar 

  19. Fei, P. & El-Deiry, W.S. P53 and radiation responses. Oncogene 22, 5774–5783 (2003).

    Article  CAS  Google Scholar 

  20. Slee, E.A., O'Connor, D.J. & Lu, X. To die or not to die: how does p53 decide? Oncogene 23, 2809–2818 (2004).

    Article  CAS  Google Scholar 

  21. Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294, 2186–2189 (2001).

    Article  CAS  Google Scholar 

  22. Shiloh, Y. & Kastan, M.B. ATM: genome stability, neuronal development, and cancer cross paths. Adv. Cancer. Res. 83, 209–254 (2001).

    Article  CAS  Google Scholar 

  23. Maser, R.S., Zinkel, R. & Petrini, J.H. An alternative mode of translation permits production of a variant NBS1 protein from the common Nijmegen breakage syndrome allele. Nat. Genet. 27, 417–421 (2001).

    Article  CAS  Google Scholar 

  24. Demuth, I. et al. An inducible null mutant murine model of Nijmegen breakage syndrome proves the essential function of NBS1 in chromosomal stability and cell viability. Hum. Mol. Genet. 13, 2385–2397 (2004).

    Article  CAS  Google Scholar 

  25. Goldowitz, D. & Hamre, K. The cells and molecules that make a cerebellum. Trends. Neurosci. 21, 375–382 (1998).

    Article  CAS  Google Scholar 

  26. Lee, Y. & McKinnon, P.J. ATM dependent apoptosis in the nervous system. Apoptosis 5, 523–529 (2000).

    Article  CAS  Google Scholar 

  27. Abner, C.W. & McKinnon, P.J. The DNA double-strand break response in the nervous system. DNA. Repair. (Amst). 3, 1141–1147 (2004).

    Article  CAS  Google Scholar 

  28. Xu, X. et al. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat. Genet. 28, 266–271 (2001).

    Article  CAS  Google Scholar 

  29. Gao, Y. et al. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95, 891–902 (1998).

    Article  CAS  Google Scholar 

  30. Gao, Y. et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404, 897–900 (2000).

    Article  CAS  Google Scholar 

  31. Frank, K.M. et al. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 396, 173–177 (1998).

    Article  CAS  Google Scholar 

  32. Frank, K.M. et al. DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol. Cell. 5, 993–1002 (2000).

    Article  CAS  Google Scholar 

  33. Lakin, N.D. & Jackson, S.P. Regulation of p53 in response to DNA damage. Oncogene 18, 7644–7655 (1999).

    Article  CAS  Google Scholar 

  34. Lee, J.H. & Paull, T.T. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304, 93–96 (2004).

    Article  CAS  Google Scholar 

  35. Stracker, T.H., Theunissen, J.W., Morales, M. & Petrini, J.H. The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA. Repair. (Amst). 3, 845–854 (2004).

    Article  CAS  Google Scholar 

  36. Lee, Y. & McKinnon, P.J. DNA ligase IV suppresses medulloblastoma formation. Cancer. Res. 62, 6395–6399 (2002).

    CAS  PubMed  Google Scholar 

  37. Tong, W.M. et al. Null mutation of DNA strand break-binding molecule poly(ADP-ribose) polymerase causes medulloblastomas in p53(−/−) mice. Am. J. Pathol. 162, 343–352 (2003).

    Article  CAS  Google Scholar 

  38. Herson, P.S. et al. A mouse model of episodic ataxia type-1. Nat. Neurosci. 6, 378–383 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Galendo for her excellent assistance in the maintenance of the animal colonies, and C. Carreira, G. Hildebrand, N. Lyandrat and S. Roche for their excellent technical assistance. We also thank Y. Shiloh, M. Tommasino and E. F. Wagner for critical reading of the manuscript. We are grateful to J. Cheney and F. Corry for editing the manuscript. P.-O. Frappart is a recipient of a fellowship from the Comité Départmental de la Ligue Nationale contre le Cancer de Haute-Savoie (2000–2002), the Association de la Recherche pour le Cancer (ARC) (2002–2003) and the Ligue Nationale contre le Cancer (2004). This work was supported by the Deutsche Forschungsgemeinschaft (SFB577).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Qi Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Phenotypic and molecular analysis of Nbn-CNS-del mice. (PDF 166 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frappart, PO., Tong, WM., Demuth, I. et al. An essential function for NBS1 in the prevention of ataxia and cerebellar defects. Nat Med 11, 538–544 (2005). https://doi.org/10.1038/nm1228

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing