Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kielin/chordin-like protein, a novel enhancer of BMP signaling, attenuates renal fibrotic disease

Abstract

The bone morphogenetic proteins (BMPs) profoundly affect embryonic development, differentiation and disease. BMP signaling is suppressed by cysteine-rich domain proteins, such as chordin, that sequester ligands from the BMP receptor. We describe a novel protein, KCP, with 18 cysteine-rich domains. Unlike chordin, KCP enhances BMP signaling in a paracrine manner. Smad1-dependent transcription and phosphorylated Smad1 (P-Smad1) levels are increased, as KCP binds to BMP7 and enhances binding to the type I receptor. In vivo, Kcp−/− mice are viable and fertile. Because BMPs have a pivotal role in renal disease, we examined the phenotype of Kcp−/− mice in two different models of renal injury. Kcp−/− animals show reduced levels of P-Smad1, are more susceptible to developing renal interstitial fibrosis, are more sensitive to tubular injury and show substantial pathology after recovery. The data indicate an important role for KCP in attenuating the pathology of renal fibrotic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mouse KCP is a secreted cysteine-rich domain protein.
Figure 2: The developmental expression pattern of Kcp.
Figure 3: KCP enhances BMP-mediated gene expression.
Figure 4: Generation and analysis of Kcp−/− mutants.
Figure 5: Analysis of obstructed and contralateral kidneys.
Figure 6: Recovery from acute tubular injury.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Dudley, A.T., Lyons, K.M. & Robertson, E.J. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev. 9, 2795–2807 (1995).

    Article  CAS  Google Scholar 

  2. Luo, G. et al. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev. 9, 2808–2820 (1995).

    Article  CAS  Google Scholar 

  3. Zeisberg, M. et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964–968 (2003).

    Article  CAS  Google Scholar 

  4. Zeisberg, M. et al. Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am. J. Physiol. Renal. Physiol. 285, F1060–F1067 (2003).

    Article  CAS  Google Scholar 

  5. Shi, Y. & Massague, J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).

    Article  CAS  Google Scholar 

  6. Zwijsen, A., Verschueren, K. & Huylebroeck, D. New intracellular components of bone morphogenetic protein/Smad signaling cascades. FEBS Lett. 546, 133–139 (2003).

    Article  CAS  Google Scholar 

  7. Nishimura, R. et al. The role of Smads in BMP signaling. Front. Biosci. 8, s275–s284 (2003).

    Article  CAS  Google Scholar 

  8. Capdevila, J. & Belmonte, J.C. Extracellular modulation of the Hedgehog, Wnt and TGF-beta signalling pathways during embryonic development. Curr. Opin. Genet. Dev. 9, 427–433 (1999).

    Article  CAS  Google Scholar 

  9. Christian, J.L. BMP, Wnt and Hedgehog signals: how far can they go? Curr. Opin. Cell Biol. 12, 244–249 (2000).

    Article  CAS  Google Scholar 

  10. Garcia Abreu, J., Coffinier, C., Larrain, J., Oelgeschlager, M. & De Robertis, E.M. Chordin-like CR domains and the regulation of evolutionarily conserved extracellular signaling systems. Gene 287, 39–47 (2002).

    Article  CAS  Google Scholar 

  11. Larrain, J. et al. BMP-binding modules in chordin: a model for signalling regulation in the extracellular space. Development 127, 821–830 (2000).

    CAS  Google Scholar 

  12. Matsui, M., Mizuseki, K., Nakatani, J., Nakanishi, S. & Sasai, Y. Xenopus kielin: A dorsalizing factor containing multiple chordin-type repeats secreted from the embryonic midline. Proc. Natl. Acad. Sci. USA 97, 5291–5296 (2000).

    Article  CAS  Google Scholar 

  13. Laitinen, L., Vitanen, I. & Saxen, L. Changes in the glycosylation pattern during embronic development of mouse kidney as revealed with lectin conjugates. J. Histochem. Cytochem. 35, 55–65 (1987).

    Article  CAS  Google Scholar 

  14. Korchynskyi, O. & ten Dijke, P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J. Biol. Chem. 277, 4883–4891 (2002).

    Article  CAS  Google Scholar 

  15. Hruska, K.A. et al. Osteogenic protein-1 prevents renal fibrogenesis associated with ureteral obstruction. Am. J. Physiol. Renal. Physiol. 279, F130–F143 (2000).

    Article  CAS  Google Scholar 

  16. Vukicevic, S. et al. Osteogenic protein-1 (bone morphogenetic protein-7) reduces severity of injury after ischemic acute renal failure in rat. J. Clin. Invest. 102, 202–214 (1998).

    Article  CAS  Google Scholar 

  17. Chevalier, R.L. Molecular and cellular pathophysiology of obstructive nephropathy. Pediatr. Nephrol. 13, 612–619 (1999).

    Article  CAS  Google Scholar 

  18. Klahr, S. & Morrissey, J. Obstructive nephropathy and renal fibrosis: The role of bone morphogenic protein-7 and hepatocyte growth factor. Kidney Int. Suppl. S105–S112 (2003).

  19. Strutz, F. et al. Identification and characterization of a fibroblast marker: FSP1. J. Cell Biol. 130, 393–405 (1995).

    Article  CAS  Google Scholar 

  20. Almanzar, M.M. et al. Osteogenic protein-1 mRNA expression is selectively modulated after acute ischemic renal injury. J. Am. Soc. Nephrol. 9, 1456–1463 (1998).

    CAS  Google Scholar 

  21. Abreu, J.G., Ketpura, N.I., Reversade, B. & De Robertis, E.M. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat. Cell Biol. 4, 599–604 (2002).

    Article  CAS  Google Scholar 

  22. Moser, M. et al. BMPER, a novel endothelial cell precursor-derived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation. Mol. Cell. Biol. 23, 5664–5679 (2003).

    Article  CAS  Google Scholar 

  23. Coles, E., Christiansen, J., Economou, A., Bronner-Fraser, M. & Wilkinson, D.G. A vertebrate crossveinless 2 homologue modulates BMP activity and neural crest cell migration. Development 131, 5309–5317 (2004).

    Article  CAS  Google Scholar 

  24. Miyazaki, Y., Oshima, K., Fogo, A., Hogan, B.L. & Ichikawa, I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J. Clin. Invest. 105, 863–873 (2000).

    Article  CAS  Google Scholar 

  25. Kopp, J.B. BMP receptors in kidney. Kidney Int. 58, 2237–2238 (2000).

    Article  CAS  Google Scholar 

  26. Schnaper, H.W., Hayashida, T., Hubchak, S.C. & Poncelet, A.C. TGF-beta signal transduction and mesangial cell fibrogenesis. Am. J. Physiol. Renal. Physiol. 284, F243–F252 (2003).

    Article  CAS  Google Scholar 

  27. Kopp, J.B. et al. Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab. Invest. 74, 991–1003 (1996).

    CAS  Google Scholar 

  28. Herzlinger, D. Renal interstitial fibrosis: remembrance of things past? J. Clin. Invest. 110, 305–306 (2002).

    Article  CAS  Google Scholar 

  29. Iwano, M. et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 110, 341–350 (2002).

    Article  CAS  Google Scholar 

  30. Kalluri, R. & Neilson, E.G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776–1784 (2003).

    Article  CAS  Google Scholar 

  31. Gould, S.E., Day, M., Jones, S.S. & Dorai, H. BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. Kidney Int. 61, 51–60 (2002).

    Article  CAS  Google Scholar 

  32. Nony, P.A. & Schnellmann, R.G. Mechanisms of renal cell repair and regeneration after acute renal failure. J. Pharmacol. Exp. Ther. 304, 905–912 (2003).

    Article  CAS  Google Scholar 

  33. Safirstein, R. Renal regeneration: reiterating a developmental paradigm. Kidney Int. 56, 1599–1600. (1999).

    Article  CAS  Google Scholar 

  34. Brophy, P.D., Ostrom, L., Lang, K.M. & Dressler, G.R. Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128, 4747–4756 (2001).

    CAS  Google Scholar 

  35. Joyner, A.L. Gene Targeting: A Practical Approach 33–61 (Oxford Univ Press, Oxford, 1993).

    Google Scholar 

  36. Phan, S.H., Thrall, R.S. & Ward, P.A. Bleomycin-induced pulmonary fibrosis in rats: biochemical demonstration of increased rate of collagen synthesis. Am. Rev. Respir. Dis. 121, 501–506 (1980).

    Article  CAS  Google Scholar 

  37. Imgrund, M. et al. Re-expression of the developmental gene Pax-2 during experimental acute tubular necrosis in mice 1. Kidney Int. 56, 1423–1431 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. ten Dijke for the BRE-Luc reporter, E. Neilson for the anti-FSP1 antibody, A. Eddy for advice with the UUO model, and R. Wiggins, E. Fearon and K. Cadigan for reading and discussions. Gene targeting was done in the University of Michigan Transgenic Animal Model Core with the assistance of E. Hughes and T. Saunders. This work is supported by US National Institutes of Health grants DK062914 and PKD Grant-in-Aid to G.R.D., DK02803 to S.R.P., and HL52285 to S.H.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory R Dressler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J., Patel, S., Cheng, X. et al. Kielin/chordin-like protein, a novel enhancer of BMP signaling, attenuates renal fibrotic disease. Nat Med 11, 387–393 (2005). https://doi.org/10.1038/nm1217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1217

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing