Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A new transgene reporter for in vivo magnetic resonance imaging


We report a new platform technology for visualizing transgene expression in living subjects using magnetic resonance imaging (MRI). Using a vector, we introduced an MRI reporter, a metalloprotein from the ferritin family, into specific host tissues. The reporter is made superparamagnetic as the cell sequesters endogenous iron from the organism. In this new approach, the cells construct the MRI contrast agent in situ using genetic instructions introduced by the vector. No exogenous metal-complexed contrast agent is required, thereby simplifying intracellular delivery. We used a replication-defective adenovirus vector to deliver the ferritin transgenes. Following focal inoculation of the vector into the mouse brain, we monitored the reporter activity using in vivo time-lapse MRI. We observed robust contrast in virus-transduced neurons and glia for several weeks. This technology is adaptable to monitor transgene expression in vivo in many tissue types and has numerous biomedical applications, such as visualizing preclinical therapeutic gene delivery.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time course of AdV-FT expression in A549 cells.
Figure 2: In vitro 1/T2 in pelleted A549 cells.
Figure 3: In vitro cytotoxicity assays in A549 cells show no adverse effects resulting from AdV-FT expression.
Figure 4: In vivo longitudinal results of MRI reporter expression in the mouse brain.
Figure 5: Immunohistochemistry results showing ferritin expression in mouse brain.


  1. Contag, C.H. & Bachmann, M.H. Advances in in vivo bioluminescence imaging of gene expression. Annu. Rev. Biomed. Eng. 4, 235–260 (2002).

    Article  CAS  Google Scholar 

  2. Gambhir, S.S. et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc. Natl. Acad. Sci. USA 96, 2333–2338 (1999).

    Article  CAS  Google Scholar 

  3. Louie, A.Y. et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol. 18, 321–325 (2000).

    Article  CAS  Google Scholar 

  4. Weissleder, R. et al. In vivo magnetic resonance imaging of transgene expression. Nat. Med. 6, 351–355 (2000).

    Article  CAS  Google Scholar 

  5. Koretsky, A.P., Brosnan, M.J., Chen, L.H., Chen, J.D. & Vandyke, T. NMR detection of creatine-kinase expressed in liver of transgenic mice — determination of free ADP levels. Proc. Natl. Acad. Sci. USA 87, 3112–3116 (1990).

    Article  CAS  Google Scholar 

  6. Walter, G., Barton, E.R. & Sweeney, H.L. Noninvasive measurement of gene expression in skeletal muscle. Proc. Natl. Acad. Sci. USA 97, 5151–5155 (2000).

    Article  CAS  Google Scholar 

  7. Stolz, J.F., Chang, S.B.R. & Kirschvink, J.L. Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments. Nature 321, 849–851 (1986).

    Article  Google Scholar 

  8. Bulte, J.W. et al. Magnetoferritin: characterization of a novel superparamagnetic MR contrast agent. J. Magn. Reson. Imag. 4, 497–505 (1994).

    Article  CAS  Google Scholar 

  9. Gottesfeld, Z. & Neeman, M. Ferritin effect on the transverse relaxation of water: NMR microscopy at 9.4 T. Magn. Reson. Med. 35, 514–520 (1996).

    Article  CAS  Google Scholar 

  10. Vymazal, J., Zak, O., Bulte, J.W.M., Aisen, P. & Brooks, R.A. T1 and T2 of ferritin solutions: effect of loading factor. Magn. Reson. Med. 36, 61–65 (1996).

    Article  CAS  Google Scholar 

  11. Vymazal, J., Brooks, R.A., Bulte, J.W.M., Gordon, D. & Aisen, P. Iron uptake by ferritin: NMR relaxometry studies at low iron loads. J. Inorg. Biochem. 71, 153–157 (1998).

    Article  CAS  Google Scholar 

  12. Welch, S. Transferrin: The Iron Carrier (CRC Press, Boca Raton, Florida, 1992).

    Google Scholar 

  13. Vymazal, J. et al. The relation between brain iron and NMR relaxation times: an in vitro study. Magn. Reson. Med. 35, 56–61 (1996).

    Article  CAS  Google Scholar 

  14. Dhenain, M., Michot, J.L., Volk, A., Picq, J.L. & Boller, F. T2-weighted MRI studies of mouse lemurs: a primate model of brain aging. Neurobiol. Aging 18, 517–521 (1997).

    Article  CAS  Google Scholar 

  15. Okon, E. et al. Biodegradation of magnetite dextran nanoparticles in the rat — a histologic and biophysical study. Lab. Invest. 71, 895–903 (1994).

    CAS  Google Scholar 

  16. Yeh, T.C., Zhang, W.G., Ildstad, S.T. & Ho, C. Intracellular labeling of T-cells with superparamagnetic contrast agents. Magn. Reson. Med. 30, 617–625 (1993).

    Article  CAS  Google Scholar 

  17. Ahrens, E.T., Feili-Hariri, M., Genove, G. & Morel, P.A. Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn. Reson. Med. 46, 1006–1013 (2003).

    Article  Google Scholar 

  18. Kircher, M.F. et al. In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res. 63, 6838–6846 (2003).

    CAS  Google Scholar 

  19. Bulte, J.W.M., Arbab, A.S., Douglas, T. & Frank, J.A. Preparation of magnetically labeled cells for cell tracking by magnetic resonance imaging. Meth. Enzymol. 386, 275–299 (2004).

    Article  CAS  Google Scholar 

  20. Epsztejn, S. et al. H-ferritin subunit overexpression in erythroid cells reduces the oxidative stress response and induces multidrug resistance properties. Blood 94, 3593–3603 (1999).

    CAS  Google Scholar 

  21. Corsi, B. et al. Transient overexpression of human H- and L-ferritin chains in COS cells. Biochem. J. 330, 315–320 (1998).

    Article  CAS  Google Scholar 

  22. Cozzi, A. et al. Overexpression of wild type and mutated human ferritin H-chain in HeLa cells — in vivo role of ferritin ferroxidase activity. J. Biol. Chem. 275, 25122–25129 (2000).

    Article  CAS  Google Scholar 

  23. Santambrogio, P. et al. Production and characterization of recombinant heteropolymers of human ferritin H-chain and L-chain. J. Biol. Chem. 268, 12744–12748 (1993).

    CAS  Google Scholar 

  24. Levi, S. et al. Evidence that H-chains and L-chains have cooperative roles in the iron-uptake mechanism of human ferritin. Biochem. J. 288, 591–596 (1992).

    Article  CAS  Google Scholar 

  25. Klausner, R.D. et al. Receptor-mediated endocytosis of transferrin in K562 cells. J. Biol. Chem. 258, 4715–4724 (1983).

    CAS  Google Scholar 

Download references


We thank C. Robison, J. Horner and K. Hitchens for their assistance. Also, we thank P. Arosio (University of Brescia, Italy) for the ferritin cDNA and P. Santambrogio (San Raffaele Scientific Institute, Milan, Italy) for the rH02 antibody. This work was funded by the Pittsburgh Life Sciences Greenhouse and the US National Institutes of Health (R01-EB003453, P41-EB001977 and P50-AR049617).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Eric T Ahrens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

In vitro uptake kinetics of 59Fe-enriched human transferring in A549 cells. (PDF 91 kb)

Supplementary Fig. 2

TfR-1 levels in AdV-FT transduced and control A549 cells. (PDF 90 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Genove, G., DeMarco, U., Xu, H. et al. A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11, 450–454 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing