Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis


Morphogenesis and remodeling of bone involve synthesis of bone matrix by osteoblasts and coordinate resorption of bone by osteoclasts. Defective bone remodeling caused by altered osteoclast activity underlies a multitude of osteopenic disorders. Receptor activator of NF-κB (RANK) and its ligand RANKL have been identified as essential factors involved in osteoclast development and bone remodeling, but their mechanism and interacting factors have not been fully characterized. Here we report that the molecular adapter Grb-2-associated binder-2 (Gab2) associates with RANK and mediates RANK-induced activation of NF-κB, Akt and Jnk. Inactivation of the gene encoding Gab2 in mice results in osteopetrosis and decreased bone resorption as a result of defective osteoclast differentiation. We also show that Gab2 has a crucial role in the differentiation of human progenitor cells into osteoclasts. We have thus identified a new, key regulatory scaffold molecule, Gab2, that controls select RANK signaling pathways and is essential for osteoclastogenesis and bone homeostasis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gab2-deficient mice develop osteopetrosis.
Figure 2: Loss of Gab2 results in impaired osteoclastogenesis.
Figure 3: Gab2 mediates RANK-induced osteoclast differentiation.
Figure 4: GAB2 has a crucial role in the differentiation of human progenitor cells into osteoclasts.
Figure 5: Gab2 controls RANK signaling.


  1. Baron, R. Molecular mechanisms of bone resorption: therapeutic implications. Rev. Rhum. Engl. Ed. 63, 633–638 (1996).

    CAS  PubMed  Google Scholar 

  2. Suda, T. et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345–357 (1999).

    Article  CAS  Google Scholar 

  3. Karsenty, G. & Wagner, E.F. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2, 389–406 (2002).

    Article  CAS  Google Scholar 

  4. Boyle, W.J., Simonet, W.S. & Lacey, D.L. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

    Article  CAS  Google Scholar 

  5. Kong, Y.Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999).

    Article  CAS  Google Scholar 

  6. Gu, H. & Neel, B.G. The 'Gab' in signal transduction. Trends Cell. Biol. 13, 122–130 (2003).

    Article  CAS  Google Scholar 

  7. Hibi, M. & Hirano, T. Gab-family adapter molecules in signal transduction of cytokine and growth factor receptors, and T and B cell antigen receptors. Leuk. Lymphoma 37, 299–307 (2000).

    Article  CAS  Google Scholar 

  8. Liu, Y. & Rohrschneider, L.R. The gift of Gab. FEBS Lett. 515, 1–7 (2002).

    Article  CAS  Google Scholar 

  9. Holgado-Madruga, M., Emlet, D.R., Moscatello, D.K., Godwin, A.K. & Wong, A.J. A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature 379, 560–564 (1996).

    Article  CAS  Google Scholar 

  10. Sachs, M. et al. Essential role of Gab1 for signaling by the c-Met receptor in vivo. J. Cell. Biol. 150, 1375–1384 (2000).

    Article  CAS  Google Scholar 

  11. Itoh, M. et al. Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol. Cell. Biol. 20, 3695–3704 (2000).

    Article  CAS  Google Scholar 

  12. Seiffert, M. et al. Gab3-deficient mice exhibit normal development and hematopoiesis and are immunocompetent. Mol. Cell. Biol. 23, 2415–2424 (2003).

    Article  CAS  Google Scholar 

  13. Gu, H. et al. Essential role for Gab2 in the allergic response. Nature 412, 186–190 (2001).

    Article  CAS  Google Scholar 

  14. Nishida, K. et al. Requirement of Gab2 for mast cell development and KitL/c-Kit signaling. Blood 99, 1866–1869 (2002).

    Article  Google Scholar 

  15. Gonzalez-Espinosa, C. et al. Preferential signaling and induction of allergy-promoting lymphokines upon weak stimulation of the high affinity IgE receptor on mast cells. J. Exp. Med. 197, 1453–1465 (2003).

    Article  CAS  Google Scholar 

  16. Gu, H., Botelho, R.J., Yu, M., Grinstein, S. & Neel, B.G. Critical role for scaffolding adapter Gab2 in Fc gamma R-mediated phagocytosis. J. Cell. Biol. 161, 1151–1161 (2003).

    Article  CAS  Google Scholar 

  17. Matsuzaki, K. et al. Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochem. Biophys. Res. Commun. 246, 199–204 (1998).

    Article  CAS  Google Scholar 

  18. Yamasaki, S. et al. Docking protein Gab2 is phosphorylated by ZAP-70 and negatively regulates T cell receptor signaling by recruitment of inhibitory molecules. J. Biol. Chem. 276, 45175–45183 (2001).

    Article  CAS  Google Scholar 

  19. Koga, T. et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758–763 (2004).

    Article  CAS  Google Scholar 

  20. Takayanagi, H. et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889–901 (2002).

    Article  CAS  Google Scholar 

  21. Teitelbaum, S.L. & Ross, F.P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638–649 (2003).

    Article  CAS  Google Scholar 

  22. Lomaga, M.A. et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015–1024 (1999).

    Article  CAS  Google Scholar 

  23. Theill, L.E., Boyle, W.J. & Penninger, J.M. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu. Rev. Immunol. 20, 795–823 (2002).

    Article  CAS  Google Scholar 

  24. Li, J. et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. USA 97, 1566–1571 (2000).

    Article  CAS  Google Scholar 

  25. David, J.P., Sabapathy, K., Hoffmann, O., Idarraga, M.H. & Wagner, E.F. Jnk1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J. Cell Sci. 115, 4317–4325 (2002).

    Article  CAS  Google Scholar 

  26. Nakamura, I. et al. Wortmannin, a specific inhibitor of phosphatidylinositol-3 kinase, blocks osteoclastic bone resorption. FEBS Lett. 361, 79–84 (1995).

    Article  CAS  Google Scholar 

  27. Takeshita, S. et al. SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat. Med. 8, 943–949 (2002).

    Article  CAS  Google Scholar 

  28. Iotsova, V. et al. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat. Med. 3, 1285–1289 (1997).

    Article  CAS  Google Scholar 

Download references


We thank L. Barra, N. Joza and E. Wagner for discussion and reagents; K. Paiha and P. Steinlein for assistance in microscopic analysis; A. Bichl and K. Flahndorfer for maintenance of mice; J. Wada and Y. Nakashima for genotype determinations; S. Hirota and T. Hirota for technical assistance; and Y. Kobayashi, N. Udagma, N. Takahashi, H. Yasuda and H. Takayanagi for technical suggestions. T.W. is supported by the H15th fellowship of the Japan Society for the Promotion of Science. This work was supported by the Institute for Molecular Biotechnology of the Austrian Academy of Sciences and the Jubilaeumsfonds of the Austrian National Bank.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Teiji Wada or Josef M Penninger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Gene targeting of mouse Gab2. (PDF 1707 kb)

Supplementary Fig. 2

Normal osteoblast function. (PDF 6118 kb)

Supplementary Fig. 3

Impaired osteoclastogenesis but normal RANK expression. (PDF 7299 kb)

Supplementary Fig. 4

RANKL/RANK-mediated signaling in preosteoclasts. (PDF 2800 kb)

Supplementary Table 1

Micro-CT analysis in Gab2-deficient mouse femurs (PDF 613 kb)

Supplementary Methods (PDF 107 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wada, T., Nakashima, T., Oliveira-dos-Santos, A. et al. The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat Med 11, 394–399 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing