Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evasion of human innate and acquired immunity by a bacterial homolog of CD11b that inhibits opsonophagocytosis

Abstract

Microbial pathogens must evade the human immune system to survive, disseminate and cause disease. By proteome analysis of the bacterium Group A Streptococcus (GAS), we identified a secreted protein with homology to the α-subunit of Mac-1, a leukocyte β2 integrin required for innate immunity to invading microbes. The GAS Mac-1–like protein (Mac) was secreted by most pathogenic strains, produced in log-phase and controlled by the covR-covS two-component gene regulatory system, which also regulates transcription of other GAS virulence factors. Patients with GAS infection had titers of antibody specific to Mac that correlated with the course of disease, demonstrating that Mac was produced in vivo. Mac bound to CD16 (FcγRIIIB) on the surface of human polymorphonuclear leukocytes and inhibited opsonophagocytosis and production of reactive oxygen species, which resulted in significantly decreased pathogen killing. Thus, by mimicking a host-cell receptor required for an innate immune response, the GAS Mac protein inhibits professional phagocyte function by a novel strategy that enhances pathogen survival, establishment of infection and dissemination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Homology of streptococcal Mac and human CD11b.
Figure 2: Mac production by GAS and analysis of Mac antibody titers in patients with GAS disease.
Figure 3: Mac-dependent inhibition of ROS production during phagocytosis.
Figure 4: Mac inhibits phagocytosis and killing of GAS by human PMNs.
Figure 5: Interaction of Mac with host cells and with CD16/Mac-1.
Figure 6: Model of how streptococcal Mac modulates human CD16/Mac-1 function.

Similar content being viewed by others

References

  1. Meresse, S. et al. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nature Cell Biol. 1, E183–188 (1999).

    Article  CAS  Google Scholar 

  2. Ernst, J.D. Bacterial inhibition of phagocytosis. Cell. Microbiol. 2, 379–386 (2000).

    Article  CAS  Google Scholar 

  3. Musser, J.M. & Krause, R.M. in Emerging Infections (eds. Krause, R.M. & Fauci, A.) 185–218 (Academic Press, San Diego, 1998).

    Book  Google Scholar 

  4. Cunningham, M.W. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 13, 470–511 (2000).

    Article  CAS  Google Scholar 

  5. Lei, B., Mackie, S.M., Lukomski, S. & Musser, J.M. Identification and immunogenicity of group A Streptococcus culture supernatant proteins. Infect. Immun. 68, 6807–6818 (2000).

    Article  CAS  Google Scholar 

  6. Corbi, A.L., Kishimoto, T.K., Miller, L.J. & Springer, T.A. The human leukocyte adhesion glycoprotein Mac-1 (complement receptor type 3, CD11b) αsubunit. Cloning, primary structure, and relation to the integrins, von willebrand factor and factor B. J. Biol. Chem. 263, 12403–12411 (1988).

    CAS  PubMed  Google Scholar 

  7. Diamond, M.S. et al. ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J. Cell. Biol. 111, 3129–3139 (1990).

    Article  CAS  Google Scholar 

  8. Springer, T.A. Folding of the N-terminal, ligand-binding region of integrin α-subunits into a β-propeller domain. Proc. Natl. Acad. Sci. USA 94, 65–72 (1997).

    Article  CAS  Google Scholar 

  9. Oxvig C., Lu C. & Springer T.A., Conformational changes in tertiary structure near the ligand binding site of an integrin domain. Proc. Natl. Acad. Sci. USA 96, 2215–2220 (1999).

    Article  CAS  Google Scholar 

  10. Beall, B., Facklam, R., Hoenes, T. & Schwartz, B. Survey of emm gene sequences and T-antigen types from systemic Streptococcus pyogenes infection isolates collected in San Francisco, California; Atlanta, Georgia; and Connecticut in 1994 and 1995. J. Clin. Microbiol. 35, 1231–1235 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Levin, J.C. & Wessels, M.R. Identification of csrR/csrS, a genetic locus that regulates hyaluronic acid capsule synthesis in group A Streptococcus. Mol. Microbiol. 30, 209–219 (1998).

    Article  CAS  Google Scholar 

  12. Federle, M.J., McIver, K.S. & Scott, J.R. A response regulator that represses transcription of several virulence operons in the group A streptococcus. J. Bacteriol. 181, 3649–3657 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Heath, A., DiRita, V.J., Barg, N.L. & Engleberg, N.C. A two-component regulatory system, CsrR-CsrS, represses expression of three Streptococcus pyogenes virulence factors, hyaluronic acid capsule, streptolysin S, and pyrogenic exotoxin B. Infect. Immun. 67, 5298–5305 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Taniguchi-Sidle, A. & Isenman, D.E. Mutagenesis of the Arg-Gly-Asp triplet in human complement component C3 does not abolish binding of iC3b to the leukocyte integrin complement receptor type III (CR3, CD11b/CD18). J. Biol. Chem. 267, 635–643 (1992).

    CAS  PubMed  Google Scholar 

  15. Van Strijp, J.A. Russell, D.G., Tuomanen, E. Brown, E.J. & Wright, S.D. Ligand specificity of purified complement receptor type three (CD11b/CD18, amb2, Mac-1). Indirect effects of an Arg-Gly-Asp (RGD) sequence. J. Immunol. 151, 3324–3336 (1993).

    CAS  PubMed  Google Scholar 

  16. DeLeo, F.R., Allen, L.-A.H., Apicella, M. & Nauseef, W.M. NADPH oxidase activation and assembly during phagocytosis. J. Immunol. 163, 6732–6740 (1999).

    CAS  PubMed  Google Scholar 

  17. Brown, E.J., Bohnsack, J.F. & Gresham, H.D. Mechanism of inhibition of immunoglobulin G-mediated phagocytosis by monoclonal antibodies that recognize the Mac-1 antigen. J. Clin. Invest. 81, 365–375 (1988).

    Article  CAS  Google Scholar 

  18. Sehgal, G., Zhang, K., Todd III, R.F., Boxer, L.A. & Petty, H.R. Lectin-like inhibition of immune complex receptor-mediated stimulation of neutrophils. J. Immunol. 150, 4571–4580 (1993).

    CAS  PubMed  Google Scholar 

  19. Zhou, M.J. & Brown, E.J. CR3 (Mac-1,α-M β2, CD11b/CD18) and FcγRIII cooperate in generation of a neutrophil respiratory burst: requirement for FcγRIII and tyrosine phosphorylation. J. Cell. Biol. 125, 1407–1416 (1994).

    Article  CAS  Google Scholar 

  20. Stocl, J. et al. Granulocyte activation via a binding site near the C-terminal region of complement receptor 3 α-chain (CD11b) potentially involved in intramembrane complex formation with glycosylphosphatidylinositol-anchored FcγRIIIB (CD16) molecules. J. Immunol. 154, 5452–5463 (1995).

    Google Scholar 

  21. Galon, J. et al. Soluble Fcγ receptor type III (FcγRIII, CD16) triggers cell activation through interaction with complement receptors. J. Immunol. 157, 1184–1192 (1996).

    CAS  PubMed  Google Scholar 

  22. Schnitzler, N., Haase, G., Podbielski, A., Lutticken, R. & Schweizer, K.G. A co-stimulatory signal through ICAM-β2 integrin-binding potentiates neutrophils phagocytosis. Nature Med. 5, 231–235 (1999).

    Article  CAS  Google Scholar 

  23. Wexler, D.E., Chenoweth, D.E. & Cleary, P.P. Mechanism of action of the group A streptococcal C5a inactivator. Proc. Natl. Acad. Sci. USA 82, 8144–8148 (1985).

    Article  CAS  Google Scholar 

  24. Ji, Y., McLandsborough, L., Kondagunta, A. & Cleary, P.P. C5a peptidase alters clearance and trafficking of group A streptococci by infected mice. Infect. Immun. 64, 503–510 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Whitnack, E. & Beachey, E.H. Antiopsonic activity of fibrinogen bound to M protein on the surface of group A Streptococci. J. Clin. Invest. 69, 1042–1045 (1982).

    Article  CAS  Google Scholar 

  26. Horstmann, R.D., Sievertsen, H.J., Knobloch, J. & Fischetti, V.A. Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein factor H. Proc. Natl. Acad. Sci. USA 85, 1657–1661 (1988).

    Article  CAS  Google Scholar 

  27. Horstmann, R.D., Sievertsen, H.J., Leippe, M. & Fischetti, V.A. Role of fibrinogen in complement inhibition by streptococcal M protein. Infect. Immun. 60, 5036–5041 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferrari, G., Langen, H., Naito, M. & Pieters, J. A coat protein on phagosomes involved in the intracellular survival of Mycobacteria. Cell 97, 435–447 (1999).

    Article  CAS  Google Scholar 

  29. Belcher, C.E. et al. The transcriptional responses of respiratory epithelial cells to Bordetella pertussis reveal host defensive and pathogen counter-defensive strategies. Proc. Natl. Acad. Sci., USA 97, 13847–13852 (2000).

    Article  CAS  Google Scholar 

  30. Thakker, M., Park, J.-S., Carey, V. & Lee, J.C. Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine model. Infect. Immun. 66, 5183–5189 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, Z.-Y. et al. Distinct cellular interactions of secreted and transmembrane Ebola virus glycoproteins. Science 279, 1034–1037 (1998).

    Article  CAS  Google Scholar 

  32. Hoe, N.P. et al. Human immune response to streptococcal inhibitor of complement, a serotype M1 group A Streptococcus extracellular protein involved in epidemics. J. Infect. Dis. 182, 1425–1436 (2000).

    Article  CAS  Google Scholar 

  33. Chaussee, M.S., Watson, R.O., Smoot, J.C. & Musser, J.M. Identification of Rgg-regulated exoproteins of Streptococcus pyogenes. Infect. Immun. 69, 822–831 (2001).

    Article  CAS  Google Scholar 

  34. Ross, G.D. et al. Specificity of membrane complement receptor type three (CR3) for β-glucans. Complement 4, 61–74 (1987).

    Article  CAS  Google Scholar 

  35. Boyum, A. Isolation of mononuclear cells and granulocytes from human blood. J. Clin. Lab. Invest. 21, 77–89 (1968).

    Article  CAS  Google Scholar 

  36. Ingalls, R.R., Arnaout, M.A. & Golenbock, D.T. Outside-in signaling by lipopolysaccharide through a tailless integrin. J. Immunol. 159, 433–438 (1997).

    CAS  PubMed  Google Scholar 

  37. Stockbauer, K.E. et al. A natural variant of the cysteine protease virulence factor of group A Streptococcus with an arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins αvβ3 and αIIbβ3 . Proc. Natl. Acad. Sci. USA 96, 242–247 (1998).

    Article  Google Scholar 

  38. Dale, J.B., Chiang, E.Y., Liu, S., Courtney, H.S. & Hasty, D.L. New protective antigen of group A streptococci. J. Clin. Invest. 103, 1261–1268 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Ingalls for providing the transfected CHO cell line expressing Mac-1; K. Hasenkrug and R. Messer for assistance with flow cytometry; and S. Falkow, K. Hasenkrug, R. M. Krause, J. Portis and I. Weissman for critical comments. This study was supported in part by Public Health Service grants AI20723 and T32AI07470.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Musser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, B., DeLeo, F., Hoe, N. et al. Evasion of human innate and acquired immunity by a bacterial homolog of CD11b that inhibits opsonophagocytosis. Nat Med 7, 1298–1305 (2001). https://doi.org/10.1038/nm1201-1298

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1201-1298

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing