Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice

Abstract

Basal cell carcinomas, the commonest human skin cancers, consistently have abnormalities of the hedgehog signaling pathway and often have PTCH gene mutations. We report here that Ptch+/– mice develop primordial follicular neoplasms resembling human trichoblastomas, and that exposure to ultraviolet radiation or ionizing radiation results in an increase in the number and size of these tumors and a shift in their histologic features so that they more closely resemble human basal cell carcinoma. The mouse basal cell carcinomas and trichoblastoma-like tumors resemble human basal cell carcinomas in their loss of normal hemidesmosomal components, presence of p53 mutations, frequent loss of the normal remaining Ptch allele, and activation of hedgehog target gene transcription. The Ptch mutant mice provide the first mouse model, to our knowledge, of ultraviolet and ionizing radiation-induced basal cell carcinoma-like tumors, and also demonstrate that Ptch inactivation and hedgehog target gene activation are essential for basal cell carcinoma tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gross and histopathological findings.
Figure 2: BCC-like tumor average cross-sectional area increases with duration of UV exposure and dose of IR exposure.
Figure 3: In situ detection of hedgehog target genes and immunohistology of Ptch+/– mouse BCC differentiation markers, hemidesmosomal proteins and Bcl2 protein.

Similar content being viewed by others

References

  1. Miller, D.L. & Weinstock, M.A. Non-melanoma skin cancer in the United States: incidence. J. Am. Acad. Dermatol. 30, 774–778 (1994).

    Article  CAS  Google Scholar 

  2. Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–851 (1996).

    Article  CAS  Google Scholar 

  3. Johnson, R.L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668–1671 (1996).

    Article  CAS  Google Scholar 

  4. Vorechovsky, I., Unden, A.B., Sandstedt B., Toftgard, R. & Stahle-Backdahl, M. Trichoepitheliomas contain somatic mutations in the overexpressed PTCH gene: support for a gatekeeper mechanism in skin tumorigenesis. Cancer Res. 57, 4677–4681 (1997).

    CAS  PubMed  Google Scholar 

  5. Raffel, C. et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 57, 842–845 (1997).

    CAS  Google Scholar 

  6. Xie, J. et al. Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res 57, 2369–2372, (1997).

    CAS  Google Scholar 

  7. Gailani, M.R. et al. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nature Genet. 14, 78–81 (1996).

    Article  CAS  Google Scholar 

  8. Kallassy, M. et al. Patched (ptch)-associated preferential expression of smoothened (smoh) in human basal cell carcinoma of the skin. Cancer Res. 57, 4731–4735 (1997).

    CAS  PubMed  Google Scholar 

  9. Dahmane, N., Lee, J., Robins, P., Heller, P. & Ruiz i Altaba, A. Activation of the transcription factor Gli1 and the sonic hedgehog signalling pathway in skin tumours. Nature 389, 876–880 (1997).

    Article  CAS  Google Scholar 

  10. Green, J., Leigh, I.M., Poulsom R., Quinn, A.G. Basal cell carcinoma development is associated with induction of the expression of the transcription factor Gli-1. Br. J. Dermatol. 139, 911–915 (1998).

    Article  CAS  Google Scholar 

  11. Bogovski, P. in Tumours of the Mouse. Pathology of Tumours in Laboratory Animals Vol. 2 (eds. Turusov, V.S. & Mohr, U.) 11–12 (International Agency for Research on Cancer, Lyon, 1994).

    Google Scholar 

  12. Oro, A.E. et al. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276, 817–821 (1997).

    Article  CAS  Google Scholar 

  13. Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90–92 (1998).

    Article  CAS  Google Scholar 

  14. Goodrich, L.V., Milenkovic, L., Higgins, K.M., & Scott, M.P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    Article  CAS  Google Scholar 

  15. Hahn, H. et al. Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nature Med. 4, 619–622 (1998).

    Article  CAS  Google Scholar 

  16. Walsh, N., Ackerman, A.B. Infundibulocystic basal cell carcinoma: a newly described variant. Mod. Path. 3, 599–608 (1990).

    CAS  Google Scholar 

  17. Gorlin, R.J. Nevoid basal cell carcinoma syndrome. Medicine 66, 98–109 (1987).

    Article  CAS  Google Scholar 

  18. Hashimoto, K., Howell, J.B., Yamanishi, Y., Holubar, K. & Bernhard, R. Electron microscopic studies of palmar and plantar pits of nevoid basal cell epithelioma. J. Invest. Dermatol. 59, 380–393 (1972).

    Article  CAS  Google Scholar 

  19. Karagas, M.R. et al. Risk of basal cell and squamous cell skin cancers after ionizing radiation therapy. J. Natl. Cancer Inst. 88, 1848–1852 (1996).

    Article  CAS  Google Scholar 

  20. O'Malley, S. et al. Multiple neoplasms following craniospinal irradiation for medulloblastoma in a patient with nevoid basal cell carcinoma syndrome. J. Neurosurg. 86, 286–288 (1997).

    Article  CAS  Google Scholar 

  21. Miller, S.J., Tung-Tien, S. & Lavker, R.M. Hair follicles, stem cells, and skin cancer. J. Invest. Dermatol. 100, 288S–294S (1993).

    Article  CAS  Google Scholar 

  22. Markey, A.C., Lane, E.B., MacDonald, D.M. & Leigh, I.M. Keratin expression in basal cell carcinomas. Br. J. Dermatol. 126, 154–160 (1992).

    Article  CAS  Google Scholar 

  23. Fairley, J.A., Heintz, P.W., Neuburg, M., Diaz, L.A. & Giudice, G.J. Expression pattern of the bullous pemphigoid-180 antigen in normal and neoplastic epithelia. Br. J. Dermatol. 133, 385–391 (1995).

    Article  CAS  Google Scholar 

  24. Bahadoran, P. et al. Altered expression of the hemidesmosome-anchoring filament complex proteins in basal cell carcinoma: possible role in the origin of peritumoral lacunae. Br. J. Dermatol. 136, 35–42 (1997).

    Article  CAS  Google Scholar 

  25. Smoller, B.R., Van de Rijn, M., Lebrun, D. & Warnke, R.A. Bcl-2 expression reliably distinguishes trichoepitheliomas from basal cell carcinomas. Br. J. Dermatol. 131, 28–31 (1994).

    Article  CAS  Google Scholar 

  26. Bonifas, J.M., Bare, J.W., Kerschmann, R.L., Master, S.P. & Epstein, E.H. Jr. Parental origin of chromosome 9q22.3-q31 lost in basal cell carcinomas from basal cell nevus syndrome patients. Hum. Mol. Genet. 3, 447–448 (1994).

    Article  CAS  Google Scholar 

  27. Van der Riet, P. et al. Progression of basal cell carcinoma through loss of chromosome 9 and inactivation of a single p53 allele. Cancer Res. 54, 25–27 (1994).

    CAS  PubMed  Google Scholar 

  28. Gailani, M.R. et al. Relationship between sunlight exposure and a key genetic alteration in basal cell carcinoma. J. Natl. Cancer Inst. 88, 349–354 (1996).

    Article  CAS  Google Scholar 

  29. Grando, S.A. et al. Nodular basal cell carcinoma in vivo vs. in vitro. Arch. Dermatol. 132, 1185–1193 (1996).

    Article  CAS  Google Scholar 

  30. Nishigori, C., Yarosh, D.B., Danawho, C. & Kripke, M.L. The immune system in ultraviolet carcinogenesis. J. Invest. Dermatol. Symp. Proc. 1, 143–146 (1996).

    CAS  Google Scholar 

  31. Della Porta, G., Terracini, B., Dammert, K. & Shubik, P. Histopathology of tumors induced in mice treated with polyoxyethylene sorbitan monostearate. J. Natl. Cancer Inst. 25, 573–605 (1960).

    CAS  PubMed  Google Scholar 

  32. Quinn, A.G., Campbell, C., Healy, E. & Rees, J.L. Chromosome 9 allele loss occurs in both basal and squamous cell carcinomas of the skin. J. Invest. Dermatol. 102, 300–303 (1994).

    Article  CAS  Google Scholar 

  33. Epstein, J.H. Comparison of the carcinogenic and cocarcinogenic effects of ultraviolet light on hairless mice. J. Natl. Cancer Inst. 34, 741–745 (1965).

    CAS  PubMed  Google Scholar 

  34. Epstein, J.H. in Models in Dermatology Vol 2 (eds. Maibach, H. & Lowe, N.J.) 303–312 (Karger, Basel, 1985).

    Google Scholar 

  35. Guo, L., Yu, Q.-C. & Fuchs, E. Targeting expression of keratinocyte growth factor to keratinocytes elicits striking changes in epithelial differentiation in transgenic mice. EMBO J. 12, 973–986 (1993).

    Article  CAS  Google Scholar 

  36. Liu, Z. et al. A passive transfer model of the organ-specific autoimmune disease, bullous pemphigoid, using antibodies generated against the hemidesmosomal antigen, BP180. J. Clin. Invest. 92, 2480–2488 (1993).

    Article  CAS  Google Scholar 

  37. Aberdam, D. et al. Developmental expression of nicein adhesion protein (laminin 5) subunits suggests multiple morphogenic roles. Cell Adhes. and Commun. 2, 115–129 (1994).

    Article  CAS  Google Scholar 

  38. Krajewski, S. et al. Immunohistochemical determination of in vivo distribution of bax, a dominant inhibitor of bcl-2. Am. J. Path. 145, 1323–1336 (1994).

    CAS  PubMed  Google Scholar 

  39. Kress, S. et al. Carcinogen-specific mutational pattern in the p53 gene in ultraviolet B radiation-induced squamous cell carcinomas of mouse skin. Cancer Res. 52, 6400–6403 (1992).

    CAS  PubMed  Google Scholar 

  40. Garrigue, J.L. et al. Optimization of the mouse ear swelling test for in vivo and in vitro studies of weak contact sensitizers. Contact Dermatitis 30, 231–237 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Goodrich for providing the Ptch +/– mouse, M. Weinstein and S. Pennypacker for technical assistance, and R. Szabo for his critical input. This work was supported by grants from the National Institutes of Health (AR39959, AR4311 and CA81888) (E.H.E.), fellowships from the Dermatology Foundation (M.A.), and donations from P. Hughes and from the Michael J. Rainen Family Foundation. M.P.S. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew P. Scott or Ervin H. Epstein Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aszterbaum, M., Epstein, J., Oro, A. et al. Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nat Med 5, 1285–1291 (1999). https://doi.org/10.1038/15242

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing