Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines

Abstract

The gradual loss of DNA from the ends of telomeres has been implicated in the control of cellular proliferative potential1–3. Telomerase is an enzyme that restores telomeric DNA sequences4, and expression of its activity was thought to be essential for the immortalization of human cells, both in vitro and in tumor progression in vivo5. Telomerase activity has been detected in 50–100% of tumors of different types, but not in most normal adult somatic tissues6,7. It has also been detected in about 70% of human cell lines immortalized in vitro and in all tumor-derived cell lines examined to date7. It has previously been shown that in vitro immortalized telomerase-negative cell lines acquire very long and heterogeneous telomeres in association with immortalization8–11 presumably via one or more novel telomere-lengthening mechanisms that we refer to as ALT (alternative lengthening of telomeres)11. Here we report evidence for the presence of ALT in a subset of tumor-derived cell lines and tumors. The maintenance of telomeres by a mechanism other than telomerase, even in a minority of cancers, has major implications for therapeutic uses of telomerase inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Olovnikov, A.M. Principle of marginotomy in template synthesis of polynucleotides. Doklady Biochem. 201, 394–397 (1971).

    Google Scholar 

  2. Harley, C.B., Futcher, A.B. & Greider, C.W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Hastie, N.D. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866–868 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Greider, C.W. & Blackburn, E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–413 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Harley, C.B. Telomere loss: Mitotic clock or genetic time bomb? Mutat. Res. 256, 271–282 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, N.W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Bacchetti, S. & Counter, C.M. Telomeres and telomerase in human cancer. Int. J. Oncology 7, 423–432 (1995).

    CAS  Google Scholar 

  8. Murnane, J.P., Sabatier, L., Marder, B.A. & Morgan, W.F. Telomere dynamics in an immortal human cell line. EMBO J. 13, 4953–4962 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bryan, T.M., Englezou, A., Gupta, J., Bacchetti, S. & Reddel, R.R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 14, 4240–4248 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rogan, E.M. et al. Alterations in p53 and p16INK4 expression and telomere length during spontaneous immortalisation of Li-Fraumeni syndrome fibroblasts. Mol. Cell. Biol. 15, 4745–4753 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bryan, T.M. & Reddel, R.R. Telomere dynamics and telomerase activity in in vitro immortalised human cells. Eur. J. Cancer, 33, 767–773 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Whitaker, N.J. et al. Involvement of RB-1, p53, p16INK4 and telomerase in immortalisation of human cells. Oncogene 11, 971–976 (1995).

    CAS  PubMed  Google Scholar 

  13. Piatyszek, M.A. et al. Detection of telomerase activity in human cells and tumors by a telomeric repeat amplification protocol (TRAP). Methods Cell Sci. 17, 1–15 (1995).

    Article  Google Scholar 

  14. Wright, W.E., Shay, J.W. & Piatyszek, M.A. Modifications of a telomeric repeat amplification protocol (TRAP) result in increased reliability, linearity and sensitivity. Nucleic Acids Res. 23, 3794–3795 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Counter, C.M., Hirte, H.W., Bacchetti, S. & Harley, C.B. Telomerase activity in human ovarian carcinoma. Proc. Natl. Acad. Sci. USA 91, 2900–2904 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hiyama, K. et al. Telomerase activity in small-cell and non-small-cell lung cancers. J. Natl. Cancer Inst. 87, 895–902 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Hiyama, E. et al. Telomerase activity in human breast tumors. J. Natl. Cancer Inst. 88, 116–122 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Sugino, T. et al. Telomerase activity in human breast cancer and benign breast lesions: Diagnostic applications in clinical specimens, including fine needle aspirates. Int. J. Cancer 69, 301–306 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Taylor, R.S. et al. Detection of telomerase activity in malignant and nonmalignant skin conditions. J. Invest. Dermatol. 106, 759–765 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Mehle, C., Piatyszek, M.A., Ljungberg, B., Shay, J.W. & Roos, G. Telomerase activity in human renal Cell carcinoma. Oncogene 13, 161–166 (1996).

    CAS  PubMed  Google Scholar 

  21. Hiyama, E., Hiyama, K., Yokoyama, T., Ichikawa, T. & Matsuura, Y. Length of telomeric repeats in neuroblastorna: Correlation with prognosis and other biological characteristics. Jpn. J. Cancer Res. 83, 159–164 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nürnberg, P., Thiel, G., Weber, F. & Epplen, J.T. Changes of telomere lengths in human intracranial tumours. Hum. Genet. 91, 190–192 (1993).

    Article  PubMed  Google Scholar 

  23. Klingelhutz, A.J., Foster, S.A. & McDougall, J.K. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380, 79–82 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Hiyama, E. et al. Telomerase activity in human intestine. Int. J. Oncology 9, 453–458 (1996).

    CAS  Google Scholar 

  25. Härle-Bachor, C. & Boukamp, P. Telomerase activity in the regenerative basal layer of the epidermis in human skin and in immortal and carcinoma-derived skin keratinocytes. Proc. Natl. Acad. Sci. USA 93, 6476–6481 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yasumoto, S. et al. Telomerase activity in normal human epithelial cells. Oncogene 13, 433–439 (1996).

    CAS  PubMed  Google Scholar 

  27. Hsiao, R., Sharma, H.W., Ramakrishnan, S., Keith, E. & Narayanan, R. Telomerase activity in normal human endothelial cells. Anticancer Res. 17, 827–832 (1997).

    CAS  PubMed  Google Scholar 

  28. Warneford, S.G. et al. Germ-line splicing mutation of the p53 gene in a cancer-prone family. Cell Growth Differ. 3, 839–846 (1992).

    CAS  PubMed  Google Scholar 

  29. Noble, J.R. et al. Association of extended in vitro proliferative potential with loss of p16INK4 expression. Oncogene 13, 1259–1268 (1996).

    CAS  PubMed  Google Scholar 

  30. Levine, A.J., Momand, J. & Finlay, C.A. The p53 tumour suppressor gene. Nature 351, 453–456 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Duncan, E.L., Whitaker, N.J., Moy, E.L. & Reddel, R.R. Assignment of SV40-immortalized cells to more than one complementation group for immortalization. Exp. Cell Res. 205, 337–344 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Gupta, J., Han, L.-P., Wang, P., Gallie, B.L. & Bacchetti, S. Development of retinoblastoma in the absence of telomerase activity. J. Natl. Cancer Inst. 88, 1152–1157 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Kyrion, G., Boakye, K.A. & Lustig, A.J. C-terminal truncation of RAP1 results in the deregulation of telomere size, stability and function in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 5159–5173 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krauskopf, A. & Blackburn, E.H. Control of telomere growth by interactions of RAP1 with the most distal telomeric repeats. Nature 383, 354–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Lundblad, V. & Blackburn, E.H. An alternative pathway for yeast telomere maintenance rescues est1 senescence. Cell 73, 347–360 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. McEachern, M.J. & Blackburn, E.H. Cap-prevented recombination between terminal telomeric repeat arrays (telomere CPR) maintains telomeres in Kluyveromyces lactis lacking telomerase. Genes Dev. 10, 1822–1834 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Chadeneau, C., Hay, K., Hirte, H.W., Gallinger, S. & Bacchetti, S. Telomerase activity associated with acquisition of malignancy in human colorectal cancer. Cancer Res. 55, 2533–2536 (1995).

    CAS  PubMed  Google Scholar 

  38. Counter, C.M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sprung, C.N., Bryan, T.M., Reddel, R.R. & Murnane, J.P. Normal telomere maintenance in immortal ataxia telangiectasia cell lines. Mutat. Res. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger R. Reddel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryan, T., Englezou, A., Dalla-Pozza, L. et al. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3, 1271–1274 (1997). https://doi.org/10.1038/nm1197-1271

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1197-1271

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing