Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Apoptosis-associated signaling pathways are required for chemotherapy-mediated female germ cell destruction

Abstract

Female sterility resulting from oocyte destruction is an unfortunate, and in many cases inevitable, consequence of chemotherapy. We show that unfertilized mouse oocytes exposed to therapeutic levels of the antitumor drug, doxorubicin (DXR), undergo apoptosis; however, fertilized oocytes do not initiate apoptosis, but enter cell-cycle arrest, when treated with DXR. Apoptosis induced by DXR in oocytes is blocked by sphingosine-1-phosphate, an inhibitor of ceramide-promoted cell death. Oocytes from Bax-deficient, but not p53-null, female mice display complete resistance to DXR-induced apoptosis in vivo and in vitro. Pretreatment of oocytes with a specific peptide inhibitor of caspases also abrogates the apoptotic response to DXR. These findings indicate that oocyte destruction caused by chemotherapy can be prevented by manipulation of apoptosis-associated signaling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Waxman, J. Chemotherapy and the adult gonad: A review. J. R. Soc. Med. 76, 144–148 (1983).

    Article  CAS  Google Scholar 

  2. Familiari, C. et al. Ultrastructure of human ovarian primordial follicles after combination chemotherapy for Hodgkin's disease. Hum. Reprod. 8, 2080–2087 (1993).

    Article  CAS  Google Scholar 

  3. Ried, H.L., Jaffe, N. Rediation-induced changes in long-term survivors of childhood cancer after treatment with radiation therapy. Semin. Roentgenol. 29, 6–14 (1994).

    Article  CAS  Google Scholar 

  4. Reichman, B.S. & Green, K.B. Breast cancer in young women: Effect of chemotherapy on ovarian function, fertility and birth defects. Monogr. Natl. Cancer Inst. 16, 125–129 (1994).

    Google Scholar 

  5. Gougeon, A. Regulation of ovarian follicular development in primates: Facts and hypotheses. Endocr. Rev. 17, 121–155 (1996).

    Article  CAS  Google Scholar 

  6. Tucker, M.J., Morton, P.C., Sweitzer, C.L. & Wright, G. Cryopreservation of human embryos and oocytes. Curr. Opin. Obstet. Gynecol. 7, 188–192 (1995).

    Article  CAS  Google Scholar 

  7. Tilly, J.L. & Ratts, V.S. Biological and clinical importance of ovarian cell death. Contemp. Obstet. Cynecol. 41, 59–86 (1996).

    Google Scholar 

  8. Tilly, J.L. Apoptosis and ovarian function. Rev. Reprod. 1, 162–172 (1996).

    Article  CAS  Google Scholar 

  9. Tilly, J.L., Tilly, K.I. & Perez, G.I. The genes of cell death and cellular susceptibility to apoptosis in the ovary: A hypothesis. Cell Death Differ. 4, 180–187 (1997).

    Article  CAS  Google Scholar 

  10. Reed, J.C. Bcl-2 and the regulation of programmed cell death J. Cell Biol. 124, 1–6 (1994).

    Article  CAS  Google Scholar 

  11. Wyllie, A.H. The genetic regulation of apoptosis. Curr. Opin. Genet. Dev. 5, 97–104 (1995).

    Article  CAS  Google Scholar 

  12. Yang, E. & Korsmeyer, S.J. Molecular thanatopsis: A discourse on the BCL-2 family and cell death. Blood 88, 386–401 (1996).

    CAS  Google Scholar 

  13. Tilly, K.I., Banerjee, S., Banerjee, P.P. & Tilly, J.L. Expression of the p53 and Wilms' tumor suppressor genes in the rat ovary: Gonadotropin repression in vivo and immunohistochemical localization of nuclear p53 protein to apoptotic granulosa cells of atretic follicles. Endocrinology 136, 1394–1402 (1995).

    Article  CAS  Google Scholar 

  14. Keren-Tal, I. et al. Involvement of p53 expression in cAMP-mediated apoptosis in immortalized granulosa cells. Cxp. Cell Res. 218, 283–295 (1995).

    Article  CAS  Google Scholar 

  15. Tilly, J.L., Tilly, K.I., Kenton, M.L. & Johnson, A.L. Expression of members of the bcl-2 gene family in the immature rat ovary: Equine chorionic gonadotropin-mediated inhibition of apoptosis is associated with decreased box and constitutive bcl-2 and bcl-x long messenger ribonucleic acid levels. Endocrinology 136, 232–241 (1995).

    Article  CAS  Google Scholar 

  16. Ratts, V.S., Flaws, J.A., Kolp, R., Sorenson, C.M.S., Tilly, J.L. Ablation of bcl-2 gene expression decreases the number of oocytes and primordial follicles established in the post-natal female mouse gonad. Endocrinology 136, 3665–3668 (1995).

    Article  CAS  Google Scholar 

  17. Knudson, C.M., Tung, K.S.K., Tourtellote, W.G., Brown, G.A.J. & Korsmeyer, S.J. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270, 96–99 (1995).

    Article  CAS  Google Scholar 

  18. Kugu, K. et al. Analysis of apoptosis and expression of bcl-2 gene family members in the human and baboon ovary. Cell Death Differ. (in the press).

  19. Alnemri, E.S. et al. Human ICE/CED-3 protease nomenclature. Cell 87, 171 (1996).

    Article  CAS  Google Scholar 

  20. Flaws, J.A. et al. lnterleukin-1β-converting enzyme-related proteases (IRPs) and mammalian cell death: Dissociation of IRP-induced oligonucleosomal endonuclease activity from morphological apoptosis in granulosa cells of the ovarian follicle. Endocrinology 136, 5042–5053 (1995).

    Article  CAS  Google Scholar 

  21. Maravei, D.V. et al. Cleavage of cytoskeletal proteins by caspases during ovarian cell death: Evidence that cell-free systems do not always mimic apoptotic events in intact cells. Cell Death Differ. (in the press).

  22. Spiegel, S., Foster, D. & Kolesnick, R.N. Signal transduction through lipid second messengers. Curr. Opin. Cell Biol. 8, 159–167 (1996).

    Article  CAS  Google Scholar 

  23. Hannun, Y.A. Function of ceramide in coordinating cellular responses to stress. Science 274, 1855–1859 (1996).

    Article  CAS  Google Scholar 

  24. Witty, J.P., Bridgham, J.T. & Johnson, A.L. Induction of apoptotic cell death in hen granulosa cells by ceramide. Endocrinology 137, 5269–5277 (1996).

    Article  CAS  Google Scholar 

  25. Kaipia, A., Chun, S., Eisenhauer, K. & Hsueh, A.J.W. Tumor necrosis factor-α and its second messenger, ceramide, stimulate apoptosis in cultured ovarian follicles. Endocrinology 137, 4864–4870 (1996).

    Article  CAS  Google Scholar 

  26. Martimbeau, S. & Tilly, J.L. Physiological cell death in endocrine-dependent tissues: An ovarian perspective. Clin. Endocrinol. 46, 241–254 (1997).

    Article  CAS  Google Scholar 

  27. Alberts, D.S., Bachur, N.R. & Holtzman, J.L. The pharmokinetics of daunomycin in man. Clin. Pharmacol. Ther. 12, 96–104 (1971).

    Article  CAS  Google Scholar 

  28. Speth, P.A., van Hoesel, Q.G. & Haanen, C. Clinical pharmokinetics of doxorubicin. Clin. Pharmokinetics 15, 15–31 (1988).

    Article  CAS  Google Scholar 

  29. Bose, R. et al. Ceramide synthase mediates daunorubicin-induced apoptosis: An alternative mechanism for generating death signals. Cell 82, 405–414 (1995).

    Article  CAS  Google Scholar 

  30. Jaffrezou, J.P. et al. Daunorubicin-induced apoptosis: Triggering of ceramide generation through sphingomyelin hydrolysis. EMBO J. 15, 2417–2424 (1996).

    Article  CAS  Google Scholar 

  31. Wang, E., Norred, W.P., Bacon, C.W., Riley, R.T. & Merril, A.H. Inhibition of sphingolipid biosynthesis by fumonisins. J. Biol. Chem. 266, 14486–14490 (1991).

    CAS  Google Scholar 

  32. Cuvillier, O. et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381, 800–803 (1996).

    Article  CAS  Google Scholar 

  33. Oltvai, Z.N., Milliman, C.L. & Korsmeyer, S.J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74, 609–619 (1993).

    Article  CAS  Google Scholar 

  34. Yin, C., Knudson, C.M., Korsmeyer, S.J. & Van Dyke, T. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385, 637–640 (1997).

    Article  CAS  Google Scholar 

  35. McCurrach, M.E., Connor, T.M.F., Knudson, C.M., Korsmeyer, S.J. & Lowe, S.W. & Lowe, S.W., box-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc. Natl. Acad. Sci. USA 94, 2345–2349 (1997).

    Article  CAS  Google Scholar 

  36. Tchang, F., Gusse, M., Soussi, T. & Mechali, M. Stabilization and expression of high levels of p53 during early development in Xenopus laevis. Dev. Biol. 159, 163–172 (1993).

    Article  Google Scholar 

  37. Lowe, S.W., Ruley, H.E., Jacks, T. & Housman, D.E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 (1993).

    Article  CAS  Google Scholar 

  38. Lane, D.P., Lu, X., Hupp, T. & Hall, P.A. The role of the p53 protein in the apoptotic response. Philos. Trans. R. Soc. Land. B. Biol. Sci. 345, 277–280 (1994).

    Article  CAS  Google Scholar 

  39. Ko, L.J. & Prives, C. p53: Puzzle and paradigm. Cenes Dev. 10, 1054–1072 (1996).

    CAS  Google Scholar 

  40. Miyashita, T. & Reed, J.C. Tumor suppressor p53 is a direct transcriptional activator of the human box gene. Cell 80, 293–299 (1995).

    Article  CAS  Google Scholar 

  41. Patel, T., Gores, G. & Kaufmann, S.H. The role of proteases during apoptosis. FASEB J 10, 587–597 (1996).

    Article  CAS  Google Scholar 

  42. Nicholson, D.W. et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43 (1995).

    Article  CAS  Google Scholar 

  43. Jacobson, M.D., Weil, M. & Raff, M.C. Role of Ced-3/ICE-family proteases in staurosporine-induced programmed cell death. J. Cell. Biol. 133, 1041–1051 (1996).

    Article  CAS  Google Scholar 

  44. Chinnaiyan, A.M. et al. Molecular ordering of the cell death pathway. Bcl-2 and Bcl-XL function upstream of the CED-3-like apoptotic proteases. J. Biol. Chem. 271, 4573–4584 (1996).

    Article  CAS  Google Scholar 

  45. Xiang, J., Chao, D.T. & Korsmeyer, S.J. BAX-induced cell death may not require interleukin-1β-converting enzyme-like proteases. Proc. Natl. Acad. Sci. USA 93, 14559–14563 (1996).

    Article  CAS  Google Scholar 

  46. Deveraux, Q.L., Takahashi, R., Salvesen, G.S. & Reed, J.C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300–304 (1997).

    Article  CAS  Google Scholar 

  47. Jacobson, M.D., Burne, J.F. & Raff, M.C. Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J. 13, 1899–1910 (1994).

    Article  CAS  Google Scholar 

  48. Schulze-Osthoff, K., Walczak, H., Droge, W. & Krammer, P.H. Cell nucleus and DNA fragmentation are not required for apoptosis. J. Cell Biol, 127, 15–20 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez, G., Knudson, C., Leykin, L. et al. Apoptosis-associated signaling pathways are required for chemotherapy-mediated female germ cell destruction. Nat Med 3, 1228–1232 (1997). https://doi.org/10.1038/nm1197-1228

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1197-1228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing