Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice

Abstract

Dystrophin-deficient mice (mdx) expressing a truncated (trc) utrophin transgene show amelioration of the dystrophic phenotype. Here we report a multifunctional study demonstrating that trc-utrophin expression leads to major improvements of the mechanical performance of muscle (that is, force development, mechanical resistance to forced lengthenings and maximal spontaneous activity) and of the maintenance of the intracellular calcium homeostasis. These are two essential functions of muscle fibers, known to be impaired in mdx mouse muscles and Duchenne muscular dystrophy (DMD) patients. Our results bring strong support to the hypothesis that muscle wasting in dystrophin-deficient DMD patients could be prevented by upregulation of utrophin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blake D.J., Tinsley J.M. & Davies K.E. Utrophin: a structural and functional comparison to dystrophin. Brain Pathol. 6, 37–47 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Tinsley, J.M. et al. Primary structure of dystrophin-related protein. Nature 360, 591–592 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Pons, F. et al. A homologue of dystrophin is expressed at the neuromuscular junctions of normal individuals and DMD patients, and of normal and mdx mice: Immunological evidence. FEBS Lett. 282, 161–165 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Matsumura, K., Ervasti, J., Ohlendieck, K., Kahl, S. & Campbell, K. Association of dystrophin-related protein with dystrophin associated proteins in mdx mouse muscle. Nature 360, 588–591 (1993).

    Article  Google Scholar 

  5. Mizumo, Y., Nonaka, I., Hirai, S. & Ozawa, E. Reciprocal expression of dystrophin and utrophin in muscles of Duchenne muscular dystrophy patients, female DMD carriers and control subjects. J. Neurol. Sci. 119, 43–52 (1993).

    Article  Google Scholar 

  6. Karpati, G. et al. Localization and quantitation of the chromosome 6-encoded dystrophin-related protein in normal and pathological human muscle. J. Neuropathol. Exp. Neural. 52, 119–128 (1993).

    Article  CAS  Google Scholar 

  7. Tinsley, J.M. & Davies, K.E. Utrophin: A potential replacement for dystrophin? Neuromusc. Disord. 3, 537–539 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Ragot Th. et al. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature 361, 647–650 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Phelps, S.F. et al. Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum. Mol. Genet. 4, 1251–1258 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Deconinck N., Ragot T., Maréchal, G., Pérricaudet M. & Gillis J.M. Functional protection of dystrophic mouse (mdx) muscles after adenovirus-mediated transfer of a dystrophin minigene. Proc. Nat. Acad. Sci. USA 93, 3570–3574 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tinsley, J.M. et al. Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene. Nature 384, 349–353 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Karpati, G. Utrophin muscles in on the action. Nature Med. 3, 22–23 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Coulton, G.R., Curtin N.A., Morgan J.E. & Partridge T.A. The mdx mouse skeletal muscle myopathy. II. Contractile properties. Neuropathol. Appl. Neurobiol. 14, 299–314 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Stedman, H.H. et al. The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352, 536–539 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Weller B., Karpati G. & Carpenter S. Dystrophin-deficient mdx muscle fibers are preferentially vulnerable to necrosis induced by experimental lengthening contractions. J. Neurol. Sci. 100, 9–13 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Moens, P., Baatsen, P.H.W.W. & Maréchal, G. Increased susceptibility of EDL muscles from mdx mice to damage induced by contractions with stretch. J. Musc. Res. Cell Motil. 14, 446–451 (1993).

    Article  CAS  Google Scholar 

  17. Petrof B.J., Shrager J.B., Stedman H.H., Kelly A.M. & Sweeney H.L. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc. Natl. Acad. Sci. USA 90, 3710–3714 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carlson, C.G. & Makiejus, R.V. A non-invasive procedure to detect muscle weakness in the mdx mouse. Muscle Nerve 13, 480–484 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Bodensteiner, J.B. & Engel, A.G., Intracellular calcium accumulation in Duchenne dystrophy and other myopathies: A study of 567,000 muscle fibres in 114 biopsies. Neurology 28, 439–446 (1978).

    Article  CAS  PubMed  Google Scholar 

  20. Gailly Ph Boland B., Himpens B., Casteels R. & Gillis, J.M. Critical evaluation of cytosolic calcium determination in resting muscle fibres from normal and dystrophic (mdx) mice. Cell Calcium 14, 473–483 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Head, S.I. Membrane potential, resting calcium and calcium transients in isolated muscle fibres from normal and dystrophic mice. J. Physiol. 469, 11–19 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pressmar, J., Brinkmeier, H., Seewald, M.J., Naumann, T. & Rüdel, R., Cellular Ca2+ concentrations are not elevated in resting cultured muscle from Duchenne (DMD) patients and in MDX mouse muscle fibres Pfluegers Arch. 426, 499–505 (1994).

    Article  CAS  Google Scholar 

  23. Turner P.R., Fong P., Denetclaw W.F. & Steinhardt, R.A. Increased calcium influx in dystrophic muscle. J. Cell Biol. 115, 1701–1712 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Leijendekker, W.J., Passaquin A.C., Metzinger L. & Ruegg, U.T. Regulation of cytosolic calcium in skeletal muscle cells of the mdx mouse under conditions of stress. Br. J. Pharmacol. 118, 611–616 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grynkiewicz, G., Poenie, M. & Tsien, R.Y. A new generation of Ca2+ indicators with greatly improved fluorescent properties. J. Biol. Chem. 260, 3440–50 (1985).

    CAS  PubMed  Google Scholar 

  26. Sunada, Y. & Campbell, K. Dystrophin-glycoprotein complex: Molecular organization and critical roles in skeletal muscle. Curr. Opin Neurol. 8, 379–384 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Takeshima, Y. et al. Amino-terminal deletion of 53% of dystrophin results in an intermediate Duchenne-Becker muscular dystrophy phenotype. Neurology 44, 1648–1651 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Winder, S.J. & Kendrick-Jones, J. Calcium/calmodulin-dependent regulation of the NH, terminal F-actin binding domain of utrophin. FEBS Lett. 357, 125–128 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Sugita, H., Takemitsu, M., Koga, R., Ishiura, S. & Arahata, K. The expression of utrophin in mdx mouse muscle dystrophy. Acta Cardiomiol. 5, 11–16 (1993).

    Google Scholar 

  30. Haws, C.M. & Lansman, J.B. Developmental regulation of mechanosensitive calcium channels in skeletal muscle from normal and mdx mice. Proc. R. Soc. Land. B 245, 173–177 (1991).

    Article  CAS  Google Scholar 

  31. McArdle, A., Edwards, R.H.T. & Jackson M.J. Time course of changes in plasma membrane permeability in the dystrophin-deficient mdx mouse. Muscle Nerve 17, 1378–1384 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Menke, A. & Jockusch, H. Decreased osmotic stability of dystrophin-less muscle cells from the mdx mouse. Nature 349, 69–71 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Webster, C., Silberstein L. Hays A.P. & Blau H.M. Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell 52, 502–13 (1988).

    Google Scholar 

  34. Bailey, N.T. Statistical Methods in Biology (English Univ. Press, London, 1959).

    Google Scholar 

  35. Cox, G.A. et al. Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature 364, 725–729 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Gillis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deconinck, N., Tinsley, J., Backer, F. et al. Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice. Nat Med 3, 1216–1221 (1997). https://doi.org/10.1038/nm1197-1216

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1197-1216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing