Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The V3 domain of the HIV–1 gp120 envelope glycoprotein is critical for chemokine–mediated blockade of infection

Abstract

The ability of CD8+ T cells derived from human immunodeficiency virus (HIV)–infected patients to produce soluble HIV–suppressive factor(s) (HIV–SF)1–3 has been suggested as an important mechanism of control of HIV infection in vivo4,5. The C–C chemokines RANTES, MlP–lα and MIP–lβ were recently identified as the major components of the HIV–SF produced by both immortalized and primary patient CD8+ T cells. Whereas they potently inhibit infection by primary and macrophage–tropic HIV–1 isolates, T–cell line–adapted viral strains tend to be insensitive to their suppressive effects6. Consistent with this discrepancy, two distinct chemokine receptors, namely, CXCR4 (ref. 7) and CCR5 (ref. 8), were recently identified as potential co–receptors for T–cell line–adapted and macrophage–tropic HIV–1 isolates, respectively9–12. Here, we demonstrate that the third hypervariable domain of the gp120 envelope glycoprotein is a critical determinant of the susceptibility of HIV–1 to chemokines. Moreover, we show that RANTES, MIP–1α and MIP–1β block the entry of HIV–1 into cells and that their antiviral activity is independent of pertussis toxin–sensitive signal transduction pathways mediated by chemokine receptors. The ability of the chemokines to block the early steps of HIV infection could be exploited to develop novel therapeutic approaches for AIDS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Walker, C.M., Moody, D., Stites, D.P. & Levy, J.A. CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science 234, 1563–1566 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Walker, C.M. & Levy, J.A. A diffusible lymphokine produced by CD8+ T lymphocytes suppresses HIV replication. Immunology 66, 628–630 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Brinchmann, J.E., Gaudernack, G. & Vartdal, F. CD8+ T cells inhibit HIV replication in naturally infected CD4+ T cells: Evidence for a soluble inhibitor. J. Immunol. 144, 2961–2966 (1990).

    CAS  PubMed  Google Scholar 

  4. Mackewicz, C.E., Ortega, H.W. & Levy, J.A. CD8+ cell anti-HIV activity correlates with the clinical state of the infected individual. J. Clin. Invest. 87, 1462–1466 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gomez, A.M., Smaill, P.M. & Rosenthal, K.L. Inhibition of HIV replication by CD8+ T cells correlates with CD4 counts and clinical stage of disease. Clin. Exp Immunol. 97, 68–75 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cocchi, F. et al. Identification of RANTES, MIP-lα and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270, 1811–1815 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Loetscher, M. et al. Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J. Biol. Chem. 269, 232–237 (1994).

    CAS  PubMed  Google Scholar 

  8. Samson, M., Labbé, O., Molereau, C., Vassart, G. & Parmentier, M. Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry 35, 3362–3367 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Feng, Y., Broder, C.C., Kennedy, P.E. & Berger, E.A. HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Deng, H.K. et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Dragic, T. et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor C-C CKR-5. Nature 381, 667–673 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Alkhatib, G. et al. CC CKR5: A RANTES, MIP-lα, MIP-1β receptor as a fusion co-factor for macrophage-tropic HIV-1. Science 272, 1955–1958 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Gartner, S. et al. The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233, 215–219 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Popovic, M., Sarngadharan, M.G., Read, E. & Gallo, R.C., Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224, 497–500 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. Lusso, P. et al. Growth of macrophage-tropic and primary human immunodeficiency virus type 1 (HIV-1) isolates in a unique CD4+ T-cell clone (PM1): Failure to downregulate CD4 and to interfere with cell-line-tropic HIV-1. J. Virol. 69, 3712–3720 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Murphy, P.M. The molecular biology of leukocyte chemoattractant receptors. Annu. Rev. Immunol. 12, 593–633 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Simon, M.I., Strathmann, M.P. & Gautan, N. Diversity of G proteins in signal transduction. Science 252, 802–807 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Palker, T.J. et al. Type-specific neutralization of the human immunodeficiency virus with antibodies to envencoded synthetic peptides. Proc. Natl. Acad. Sci. USA 85, 1932–1936 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rusche, J.R. et al. Antibodies that inhibit fusion of human immunodeficiency virus-infected cells bind a 24-amino acid sequence of the viral envelope, gp120. Proc. Natl. Acad. Sci. USA 85, 3198–3202 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Javaherian, K.A. et al. Principal neutralizing domain of the human immunodeficiency virus type 1 envelope protein. Proc. Natl. Acad. Sci. USA 86, 6768–6772 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Freed, E.O., Myers, D.J. & Risser, R. Identification of the principal neutralizing determinant of human immunodeficiency virus type 1 as a fusion domain. J. Virol. 65, 190–194 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shioda, T., Levy, J.A. & Cheng-Meyer, C. Macrophage and T cell-line tropisms of HIV-1 are determined by specific regions of the envelope gp120 gene. Nature 349, 167–169 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Takeuchi, Y., Akutsu, M., Murayama, K., Shimizu, N. & Hoshino, H. Host range mutant of human immunodeficiency virus type 1: Modification of cell tropism by a single point mutation at the neutralization epitope in the env gene. J. Virol. 65, 1710–1718 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chesebro, B., Wehrly, K., Nishio, J. & Ferryman, S. Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: Definition of critical amino acids involved in cell tropism. J. Virol. 66, 6547–6554 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hwang, S.S., Boyle, T.J., Lyerly, H.K. & Cullen, B.R. Identification of envelope V3 loop as the major determinant of CD4 neutralization sensitivity of HIV-1. Science 257, 535–537 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Ivanoff, L.A. et al. V3 loop region of the HIV-1 gp120 envelope protein is essential for virus infectivity. Virology 187, 423–432 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Paxton, W.A. et al. Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remained uninfected despite multiple high-risk sexual exposure. Nature Med. 2, 412–417 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Bacon, K.A., Premack, B.A., Gardner, P., Schall, T.J. Activation of dual T cell signaling pathways by the chemokine RANTES. Science 269, 1727–1730 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Koito, A., Harrowe, G., Levy, J.A. & Cheng-Mayer, C. Functional role of the V1/V2 region of human immunodeficiency virus type 1 envelope glycoprotein gp120 in infection of primary macrophages and soluble CD4 neutralization. J. Virol. 68, 2253–2259 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Willey, R.L. & Martin, M.A. Association of human immunodeficiency virus type 1 envelope glycoprotein with particles depends on interactions between the third variable and conserved regions of gp120. J. Virol. 67, 3639–3643 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Stamatatos, L., Werner, A. & Cheng-Mayer, C. Differential regulation of cellular tropism and sensitivity to soluble CD4 neutralization by the envelope gp120 of human immunodeficiency virus type 1. J. Virol. 68, 4973–4979 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Carrillo, A. & Ratner, L. Human immunodeficiency virus type 1 tropism for T-lymphoid cell lines: role of the V3 loop and C4 envelope determinants. J. Virol. 70, 1301–1309 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao, W.-Y., Cara, A., Gallo, R.C. & Lori, F. Low levels of deoxynucleotides in peripheral blood lymphocytes: a strategy to inhibit human immunodeficiency virus replication. Proc. Natl. Acad. Sci. USA 90, 8925–8928 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual, edn. 2 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cocchi, F., DeVico, A., Garzino-Demo, A. et al. The V3 domain of the HIV–1 gp120 envelope glycoprotein is critical for chemokine–mediated blockade of infection. Nat Med 2, 1244–1247 (1996). https://doi.org/10.1038/nm1196-1244

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1196-1244

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing