Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decreased expression of AMPA receptor messenger RNA and protein in AIDS: A model for HIV-associated neurotoxicity

Abstract

HIV infection can cause extensive neuronal loss and clinically a severe dementia. The cause of the neurotoxicity remains unclear as neurons are not infected, but disturbance of glutamate-linked calcium entry has been implicated. In this study, we have shown a decrease in HIV-infected brain of the expression of mRNA and protein of the GluR-A flop subtype of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor in cerebellar Purkinje cells. Although Purkinje cells are relatively resistant to loss, the observed disturbance of AMPA receptors may contribute to the neurotoxic process in other vulnerable brain regions and clinically to the development of dementia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Everall, I.P., Luthert, P.J. & Lantos, P.L. Neuronal loss in the frontal cortex in HIV infection. Lancet 337, 1119–1121 (1991).

    Article  CAS  Google Scholar 

  2. Everall, I.P., Luthert, P.J. & Lantos, P.L. Neuronal number and volume alterations in the neocortex of HIV infected individuals. J. Neurol. Neurosurg. Psychiatry 56, 481–486 (1993).

    Article  CAS  Google Scholar 

  3. Wiley, C.A. et al. Neocortical damage during HIV infection. Ann. Neural. 29, 651–657 (1991).

    Article  CAS  Google Scholar 

  4. Everall, I.P. et al. Neuronal loss in symptom-free HIV infection. Lancet 340, 1413 (1992).

    Article  CAS  Google Scholar 

  5. Everall, I.P., Glass, J.D., McArthur, J., Spargo, E. & Lantos, P. Neuronal density in the superior frontal and temporal gyri does not correlate with the degree of human immunodeficiency virus-associated dementia. Acta. Neuropathol. 88, 538–544 (1994).

    Article  CAS  Google Scholar 

  6. Heyes, M.P. et al. Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: Relationship to clinical and neurological status. Ann. Neurol. 29, 202–209 (1991).

    Article  CAS  Google Scholar 

  7. Hill, J.M., Mervis, R.F., Avidor, R., Moody, T.W. & Brenneman, D.E. HIV envelope protein-induced neuronal damage and retardation of behavioural development in rat neonates. Brain Res. 603, 222–233 (1993).

    Article  CAS  Google Scholar 

  8. Hollman, M., O'Shea-Greenfield, A., Rogers, S.W. & Heinemann, S. Cloning by functional expression of a member of the glutamate receptor family. Nature 342, 643–648 (1989).

    Article  Google Scholar 

  9. Keinänen, K. et al. A family of AMPA selective glutamate receptors. Science 249, 556–560 (1990).

    Article  Google Scholar 

  10. Sommer, B. et al. Flip and flop: A cell-specific functional switch in glutamate-operated channels of the CNS. Science 249, 1580–1585 (1990).

    Article  CAS  Google Scholar 

  11. Seeburg, P.H. The molecular biology of mamalian glutamate receptor channels. Trends Neurosci. 16, 359–365 (1993).

    Article  CAS  Google Scholar 

  12. Garthwaite, J., Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci. 14, 60–67 (1991).

    Article  CAS  Google Scholar 

  13. Baude, A., Molnar, E., Latawiec, D., McIlhinney, R.A. & Somogyi, P. Synaptic and non-synaptic localization of the GluR1 subunit of the AMPA-type excitatory amino acid receptor in the rat cerebellum. J. Neurosci. 14, 2830–2843 (1994).

    Article  CAS  Google Scholar 

  14. Brenneman, D.E. et al. Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive peptide. Nature 335, 639–642 (1988).

    Article  CAS  Google Scholar 

  15. Dreyer, E.B., Kaiser, P.K., Offermann, J.T. & Lipton, S.A. HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science 248, 364–367 (1990).

    Article  CAS  Google Scholar 

  16. Lipton, S.A. Calcium channel antagonists and human immunodeficiency virus coat protein-mediated neuronal injury. Ann. Neural. 30, 111–114 (1991).

    Article  Google Scholar 

  17. Garcia-Ladona, F.J., Palacios, J.M., Probst, A., Wiser, H.G. & Mengod, G. Excitatory amino acid AMPA receptor mRNA localization in several regions of normal and neurological disease affected human brain. An in situ hybridization histochemistry study. Molec. Brain Res. 21, 75–84 (1994).

    Article  CAS  Google Scholar 

  18. Burnashev, N., Monyer, H., Seeburg, P.H. & Sakmann, B. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8, 189–198 (1992).

    Article  CAS  Google Scholar 

  19. Day, N.C. et al. Distribution of AMPA-selective glutamate receptor subunits in the human hippocampus and cerebellum. Molec. Brain Res. 31, 17–32 (1995).

    Article  CAS  Google Scholar 

  20. Masliah, E., Ge, N., Achim, C.L., Hansen, L.A. & Wiley, C.A. Selective neuronal vulnerability in HIV encephalitis. J. Neuropath. exp. Neurol. 51, 585–593 (1992).

    Article  CAS  Google Scholar 

  21. Benke, T.A., Jones, O.T., Collingridge, G.L. & Angeldes, K.L. N-Methyl-D-aspartate receptors are clustered and immobilized on dendrites of living cortical neurons. Proc. natn. Acad. Sci. U.S.A. 90, 7819–7823 (1993).

    Article  CAS  Google Scholar 

  22. Linden, D. & Conner, J.A. Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science 254, 1656–1659 (1991).

    Article  CAS  Google Scholar 

  23. Garry, R.F., Kort, J.J., Koch-Nolte, F. & Koch, G. Similarities of viral proteins to toxins that interact with monovalent cation channels. AIDS 5, 1381–1384 (1991).

    Article  CAS  Google Scholar 

  24. Magnuson, D.S., Knudson, B.E., Geiger, J.D., Brownstone, R.M. & Nath, A. Human immunodeficiency virus type 1 tat activates non-N-methyl-D-aspartate excitatory amino acid receptors and causes neurotoxicity. Ann. Neurol. 37, 373–380 (1995).

    Article  CAS  Google Scholar 

  25. Werner, T. et al. HIV-1 nef protein exhibits structural and functional similarity to scorpion peptides interacting with K+ channels. AIDS 5, 1301–1308 (1991).

    Article  CAS  Google Scholar 

  26. Saito, Y. Overexpression of nef as a marker for restricted HIV-1 infection of astrocytes in postmortem pediatric central nervous tissues. Neurology 44, 474–481 (1994).

    Article  CAS  Google Scholar 

  27. Frankel, A.D. & Pabo, C.O. cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189–1193 (1988).

    Article  CAS  Google Scholar 

  28. Diop, A.G. et al. Tetrodotxin blocks HIV coat protein (gp120) toxicity in primary neuronal cultures. Neurosci. Lett. 165, 187–190 (1994).

    Article  CAS  Google Scholar 

  29. Hall, T.C., Miller, A.K.H. & Corsellis, J.A.N. Variations in the human purkinje cell population according to age and sex. Neuropath. Appl. Neurobiol. 1, 267–292 (1975).

    Article  Google Scholar 

  30. Clark, P.J. & Evans, F.C. Distance to nearest neighbour as a measure of spatial relationships in populations. Ecology 35, 445–453 (1954).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Everall, I., Hudson, L., Al-Sarraj, S. et al. Decreased expression of AMPA receptor messenger RNA and protein in AIDS: A model for HIV-associated neurotoxicity. Nat Med 1, 1174–1178 (1995). https://doi.org/10.1038/nm1195-1174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1195-1174

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing